Dioxin/Furan in Lake Ontario Tributaries 1995 - 1997

> Karen Woodfield Frank Estabrooks

Sediment Assessment and Management Section Bureau of Watershed Assessment and Research Division of Water NYS Department of Environmental Conservation Albany, New York

Acknowledgments

The Authors would like to thank the USEPA for providing the funding to conduct this study and Ellen Heath of the USEPA for providing the Lake Ontario sediment samples. Thanks also to Bruce Garabedian, Bernadette Anderson and Jim Swart for collecting the sediment and water samples; Margaret Novak, Larry Abele and Robert Bode for collecting the macroinvertebrate samples; and Tim Preddice for collecting the fish tissue samples. Thanks to Bernadette Anderson for creating the map of sample locations and to Bruce Garabedian for providing the dioxin/furan spreadsheet used to create the appendix tables. We would also like to acknowledge the efforts of Dick Draper who coordinated the project within the Division of Water and Jennifer Wagar of R.P.I. for creating the Addendum Dioxin/Furan in Lake Ontario Tributaries report.

Abstract

Between 1995 and 1997 samples of sediment, water, macroinvertebrates and fish were collected from tributaries to Lake Ontario and were analyzed for dibenzodioxins and furans. The purpose of this study was to provide an initial screening of the levels of dioxin/furan in several tributaries to and backwater areas of Lake Ontario. Additionally, during the study, twenty-one samples were collected in Lake Ontario, two were collected in Lake Erie and several were collected in tributaries to Lake Erie.

Toxic Equivalency Quotients (TEQ's) were calculated using the analytical results. Toxic Equivalency is a methodology that quantifies the toxicity of 2,3,7,8substituted dioxin and furan congeners by proportioning their toxicities to 2,3,7,8-TCDD. The TEQ's were then compared to existing criteria and guidelines for protection of wildlife and/or human health. All of the TEQ's for the water samples collected exceeded the NYS Ambient Water Quality Standard for human consumption of fish (see QA/QC Summary for further details). The TEQ's of the fish tissue samples were all less than existing guidelines proposed by the New York State Department of Health. These statements may not be contradictory because only two fish sample locations corresponded with the water sample locations. The concentrations in the macroinvertebrate tissue samples were less than the guideline adapted from numbers proposed by Eisler of the U.S. Fish and Wildlife Service for fish tissue concentrations. The TEQ's of sediment samples collected at many sites including 20 of the 22 sediment samples collected in Lake Ontario and 24 of the 41 tributary/core samples, exceeded the wildlife bioaccumulation criteria as presented in the NYSDEC Division of Fish and Wildlife Technical Guidance for the screening of Contaminated Sediments. The only sample where the TEQ exceeded the sediment criteria for both wildlife bioaccumulation and human bioaccumulation was collected at the Pettit Flume.

The dioxin/furan data were evaluated by comparison to sediment samples collected by NYSDEC from throughout New York State. For this evaluation, homolog totals for both dioxin and furan were designated a low, average or elevated classification. A database of 218 sample sites in NYS was used to designate these ranges. Based on this qualitative evaluation, there were elevated levels of dioxin or furan at twenty two of the sixty three surficial/core sediment sampling sites, with twenty-nine sites having average levels.

This report is intended to be a summary of the data that was gathered as part of the Dioxin/furan in Lake Ontario Tributaries study and the sediment inventory validation (1A) study. All samples were collected by NYSDEC with sample analyses funded by EPA grants. The collected data will be combined with other dioxin/furan data from throughout the State. Future reports will attempt to identify sources of dioxin/furan to Lake Ontario and to correlate this data with data collected throughout the State for different matrixes (fish tissue, water, sediment and macroinvertebrate tissue). A future report will also correlate the dioxin/furan data with other contaminant data (i.e.:

chlorinated phenols, PCB's, etc) obtained for each site. This is a long term project which will be completed as the needed time and resources are available.

The multi media database needs to be expanded so that the relationships of the dioxin and furan concentrations in the water column, sediment and biota and the usefulness of the various standards and guidelines can be studied in greater detail.

	Contents	
Chapter Abstract	<u>Pa</u>	<u>age</u> i
List of Figure	es	iv
List of Table	S	iv
Introduction		1
Historical St	udies	2
Description	of Sampling Program	3
Results and	Observations	6
I.	Sediment Samples	6
	Qualitative Evaluation	6
	Toxic Equivalency	8
	Percent Abundance Patterns	12
	Dioxin/Furan Homolog Percent Abundance Patterns	12
	2,3,7,8-Substituted Congener Percent Abundance Patterns	21
	TEQ Percent Abundance Patterns	30
Ш	Water Column	39
Ш	Fish Tissue	40
IV	Macroinvertebrate Tissue	41
QA/QC Sum	imary	42
References		44
	ndix A ndix B	45 73

Contents

List of Tables

Table	Page
Table 1 - Dioxin and Furan Homolog Totals	7
Table 2 - Toxic Equivalency at Sampled Sites	9
Table 3 - Toxic Equivalency at Sites in Lake Ontario	10
Table 4 - Water Column TEQ Data	39
Table 5 - TEQ Data for Fish Tissue	40
Table 6 - TEQ Data for Macroinvertebrate Tissue	41

List of Figures

igure Pag	е
igure 1 - Dioxin/Furan Sampling Sites	5
igure 2 - TEQ's with Depth for Core Sample Sites 1	1
igure 3 - Homolog Abundance - Lake Erie and Tributaries to Lake Erie	3
igure 4 - Homolog Abundance - Tributaries to Niagara River 1	4
igure 5 - Homolog Abundance - Western Section - Lake Ontario 1	5
igure 6 - Homolog Abundance - Central Section - Lake Ontario 1	6
igure 7 - Homolog Abundance - Eastern Section - Lake Ontario 1	7
igure 8 - Homolog Abundance - Core Samples in Lake Ontario Backwater Areas 1	8
igure 9 - Homolog Abundance - Tributaries to Lake Ontario 1	9
igure 10 - Homolog Abundance - Lake Ontario Outlet 2	20

List of Figures - Continued

Figure	ge
Figure 11 - Congener Percent Abundance - Lake Erie and Tributaries to Lake Erie	22
Figure 12 - Congener Percent Abundance - Tributaries to Niagara River	23
Figure 13 - Congener Percent Abundance - Western Section - Lake Ontario	24
Figure 14 - Congener Percent Abundance - Central Section - Lake Ontario	25
Figure 15 - Congener Percent Abundance - Eastern Section - Lake Ontario	26
Figure 16 - Congener Percent Abundance - Core Samples in Lake Ontario Backwater Areas	27
Figure 17 - Congener Percent Abundance - Tributaries to Lake Ontario	28
Figure 18 - Congener Percent Abundance - Lake Ontario Outlet	29
Figure 19 - Percent Abundance TEQ - Lake Erie and Tributaries to Lake Erie	31
Figure 20 - Percent Abundance TEQ - Tributaries to Niagara River	32
Figure 21 - Percent Abundance TEQ - Western Section - Lake Ontario	33
Figure 22 - Percent Abundance TEQ - Central Section - Lake Ontario	34
Figure 23 - Percent Abundance TEQ - Eastern Section - Lake Ontario	35
Figure 24 - Percent Abundance TEQ - Core Samples in Lake Ontario Backwater Areas	36
Figure 25 - Percent Abundance TEQ - Tributaries to Lake Ontario	37
Figure 26 - Percent Abundance TEQ - Lake Ontario Outlet	38

Introduction

Dioxins and furans are a group of chemical compounds (halogenated aromatic hydrocarbons) that are created through a number of processes. Some of these processes include: chlorination of phenolic compounds; manufacture of chlorinated phenols, phenoxy herbicides, chlorinated benzenes, etc.; combustion of municipal, hospital, or hazardous waste or sewage sludge; smelting operations and the burning of coal, wood, or petroleum products.

Low yields of dioxins and furans are produced relative to other environmental pollutants. But because they are thought to be highly toxic, bioaccumulative, and environmentally persistent, they have garnered much attention and debate over the last quarter of the century.

The purpose of this report is to establish a database of dioxin and furan concentrations in the various media (water, tissue and sediment) in New York State. This portion of the database specifically focuses on the tributaries to Lake Ontario, twenty three locations within Lake Ontario and several tributaries to Lake Erie. The results of this database and the previously collected dioxin/furan data have been combined in order to determine qualitative values for low, average and elevated homolog totals for dioxins and furans. These gualitative values are used as one tool available to evaluate the concentrations of dioxin/furan observed in the sediment. Additionally, toxic equivalency quotients were calculated for each sample using both the existing toxic equivalency factors (ITEF, 1994) and the newest World Health Organization (1999) toxic equivalency factors. These TEQ's were then used to compare the dioxin/furan concentrations to NYSDEC human and wildlife bioaccumulation criteria. Also, percent abundance of dioxin and furan homologs, 2,3,7,8,-substituted congeners and TEQ's were calculated and presented graphically. These patterns were evaluated to determine similarity or differences between sample sites. Percent abundance patterns will be used as a first step to identifying sources.

Future efforts will focus on expanding the Lake Ontario Basin database and also combining this database with the previously collected dioxin/furan data obtained throughout New York State. The combined database will be used to evaluate relationships between dioxins and furans with other contaminants (e.g.: furans and PCB congeners), and to evaluate the relationships between dioxin/furan congeners in different media (water, biota, sediment) collected at the same site. An evaluation of relationships between percent abundance patterns and whether they're useful in identifying possible sources of dioxin/furan to Lake Ontario will also be completed. Mapping of the concentration gradients in the Lake and the Tributaries could also be useful in identifying sources. Additional core samples should be collected and compared to historical core data in order to assess whether trends in dioxin/furan concentrations can be determined for the Great Lakes Basin. Areal deposition of dioxin's/furans could be evaluated by sampling water bodies with no known direct inputs.

Historical Studies

A historical review of some of the known studies of dioxin/furan levels in the Lake Ontario drainage basin was performed and is presented below. The purpose of the historical review was to gather existing information regarding dioxin/furan concentrations in the study area.

Since 1989, Frank Estabrooks of the NYSDEC Division of Water has been monitoring various environmental matrices (bottom sediment, water, macroinvertebrates, and fish) for dioxin/furan concentrations. Sixty sites, within New York State, were selected for this long term study. These sites represented both clean, "normal", and contaminated areas. The goal of this study was to develop a database of environmental dioxin/furan concentrations from which scientific and management decisions could be made. The results of this 1995-1997 study will augment this previously existing database with additional samples from drainage areas into the Great Lakes.

The Hyde Park TCDD study, was conducted from 1986 through 1990 by NYSDEC Division of Hazardous Waste to determine the extent of 2,3,7,8,-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) contamination in Lake Ontario. The contamination was attributable to releases from the Hyde Park Landfill site which is located near the Niagara River. Sediment and fish tissue samples were collected throughout the Lake. Contours of the results of the sediment sample analyses were plotted for the entire Lake. These contours showed the highest concentrations of 2,3,7,8-TCDD (greater than 300 ppt) to be located near the Olcott Harbor and Sodus Bay.

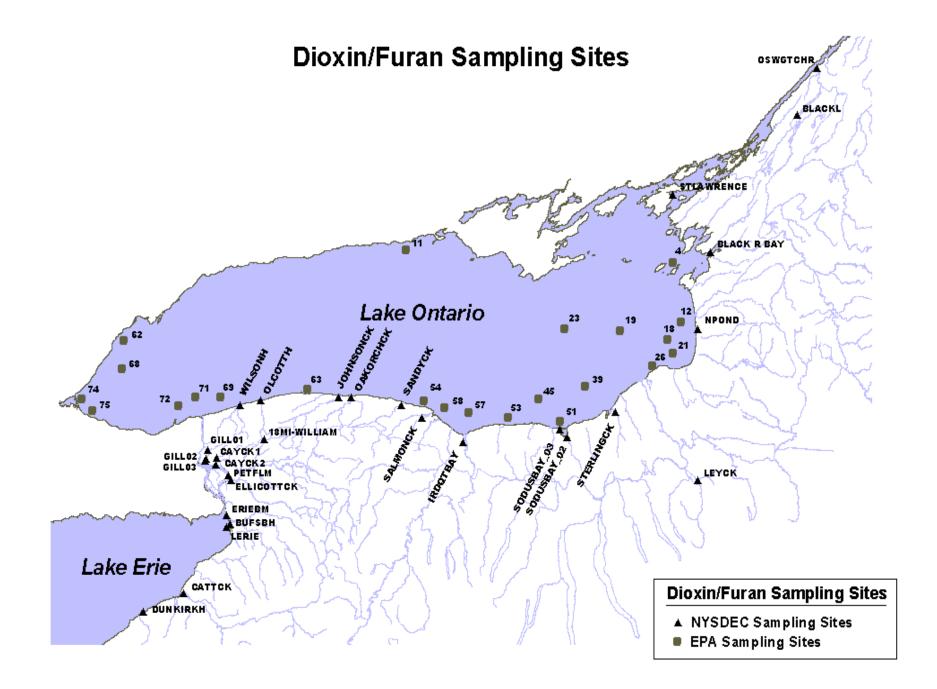
The National Study of Chemical Residues in Fish (September 1992), conducted by the USEPA, indicated tributaries (Niagara River and the Eighteenmile Creek) where dioxin/furan concentrations in fish flesh exceeded the Food and Drug Administration (FDA) action levels for poisonous and deleterious substances in fish and shellfish for human consumption (25 ppt).

The dioxins/furans contributed to Lake Ontario via Eighteenmile Creek was the subject of a study by Frank Estabrooks et al of the NYSDEC during the years 1989 through 1992. The results of this study are described in <u>An Investigation of the Dioxin/Furan Concentrations in the Sediments of Eighteenmile Creek and the Erie Canal Near Lockport, New York</u>. The results of this investigation indicated that the highest concentrations of dioxin/furans were detected in the Erie Canal near Lockport and were the likely source of dioxins/furans to Eighteenmile Creek. Also, the concentrations were considered "levels of concern" since they exceeded NYSDEC wildlife bioaccumulation guidance values.

The NYSDEC Division of Fish and Wildlife collected fish as part of the Lake Ontario Supplemental Biomonitoring Project, 1996. Fish were collected in the Buffalo River, Black River Bay, Oswego River, Eighteenmile Creek, Raquette River, Genesee River, Grasse River, Oswegatchie River, Oak Orchard Creek and Dunkirk Harbor. These fish were analyzed for dioxin/furan concentrations by Triangle Labs of North Carolina and the data is contained in Table 5.

Description of Sampling Program

Twenty seven surficial sediment samples from tributaries, twenty two surficial sediment samples from Lake Ontario and four sediment core samples from Lake Ontario backwater areas were collected as part of this study. These samples were collected to determine the current and historical concentration of dioxin/furan and PCB's at these locations. Macroinvertebrate and water samples were collected at eight and nine of the surficial sediment sample locations, respectively. (No suitable macroinvertebrate sample was collected at Cattaraugus Creek). Macroinvertebrate samples were collected in an attempt to characterize benthic tissue concentrations within the bioaccumulation process. All nine water and eight macroinvertebrate tissue samples were analyzed for dioxin/furan and PCB concentrations. In 1996 and 1997, young of year fish were collected, by NYSDEC Division of Fish and Wildlife personnel, in seventeen tributaries to Lake Ontario. Samples were prepared and frozen and were submitted for dioxin/furan analyses.


Core Samples

Radio-dated sediment core samples were collected at three locations, Irondequoit Bay, Sodus Bay and North Pond, with two separate cores collected in Sodus Bay. Radio-dating provides time identifiers to the strata in the core. Irondequoit Bay and Sodus Bay were selected for core samples because they are representative of Lake backwater areas, with additional inputs from Irondequoit Creek and Sodus Creek. North Pond was selected as representing a "clean" Lake backwater area. Core samples were collected from the NYSDEC pontoon boat using a vibra-core sampler.

The North Pond core sample was divided into two sub-samples, the Irondequoit Bay core was subdivided into four subsections and the Sodus Bay cores were subdivided into three and four sub-samples respectively prior to chemical analysis. Each subsection was analyzed for total dioxin and furan tetra thru octa homologs and 2,3,7,8 - substituted congeners (using EPA method 1613B), congener PCB, total organic carbon, total volatile solids and grain size distribution. The second core sample from each location was sent for radio-dating using cesium 137, beryllium 7 and lead 210.

Surficial Samples

Surficial sediment samples were collected in 1997 from Olcott Harbor, Black Lake and near the mouths of Oswegatchie River, Johnson Creek, Oak Orchard Creek, Sandy Creek, Salmon Creek, Sterling Creek and Cattaraugus Creek. These sample sites represent tributaries to Lake Ontario and one tributary to Lake Erie. In addition, 22 of 75 surficial sediment samples collected from Lake Ontario, by EPA staff, were analyzed for dioxin/furan concentration. In 1995, nine surficial sediment samples were collected from sites adjacent to Lake Erie, and one site on Eighteenmile Creek. Samples collected at these locations provide a representation of current, ambient conditions. A Ponar® Dredge, which has been modified to allow removal of reasonably undisturbed sediments by sliding the jaw screens off, was used for sample collection. Dioxin/furan and PCB analyses were performed on the surficial sediment samples. All sample sites are depicted in Figure 1 - Dioxin/furan sampling sites.

Results and Observations

EPA method 1613B, dioxin/furan analysis, produces fifteen 2,3,7,8-substituted congener and ten tetra-through octa- homolog results. The results of these analyses are presented in Tables contained in Appendix A. The results of the PCB congener analyses and the grain size distributions are presented in Tables contained in Appendix B.

I. Sediment samples

Qualitative Evaluation

One process for evaluating dioxin and furan concentrations uses a qualitative approach. For this report, based on analytical results of 218 sediment samples collected by NYSDEC from throughout New York State, the tetra through octa dioxin homolog totals are considered to be low or background levels if less than 500 ppt. An average level would be greater than 500 and less than 2,500 ppt. Elevated levels would be greater than 2,500 ppt. For the furan tetra- through octa- homolog totals, less than 100 ppt would be low or background. From greater than 100 ppt to less than 750 ppt, the level would be average. Elevated levels would be greater than 750 ppt. These levels were determined using the NYSDEC Division of Water's existing database and dividing the database into thirds. The homolog totals representing the highest one-third of the database are designated as elevated, those totals representing the middle one-third are designated average and the lowest one-third are designated as low or background.

Elevated levels of the dioxin homolog totals were observed in samples collected from the Black River Bay, Eighteenmile Creek (William St. Dump), Gill Creek (3), Cayuga Creek (2), Petit Flume, Wilson and Olcott Harbors, Erie Basin Marina and sections representing 10-40 and 40-80 cm of the Irondequoit Bay core sample. In the Lake Ontario samples, elevated levels of dioxin homolog totals occurred at sites 19, 23, 39A, 45, 57, 63, 68 and 72. Average levels of the dioxin homolog totals were observed in samples collected from twenty-one of the other sites (see Table 1).

Elevated levels of the furan homolog totals were observed at all of the same sites as the elevated dioxin homolog totals except for Wilson Harbor and site 63 in Lake Ontario. Additional Lake Ontario sites contained elevated levels of furan homolog totals including sites 4, 21, 69, and 71. Average levels of the furan homolog totals were observed in twenty-three samples as per Table 1.

Site	dioxin homolog totals (ppt)	furan homolog totals (ppt)	Site	dioxin homolog totals (ppt)	furan homolog totals (ppt)
Oswegatchie River	968	191	Sodus Bay (1) (0-10)	837	225
Black River	5,989	1,633	Sodus Bay (1) (10-20)	429	118
St. Lawrence River	594	197	Irondequoit Bay (0-10)	2,396	593
Erie Basin Marina	14,155	1,960	Irondequoit Bay (10-40)	3,534	790
Buffalo Ship Canal	2,381	640	Irondequoit Bay (40-80)	7,682	3,290
Lake Erie (06)	860	110	Sodus Bay (2) (0-10)	707	272
Eighteenmile Creek	49,927	13,090	Cayuga Creek (1)	789	268
Pettit Flume	68,000	837,000	Cayuga Creek (2)	5,980	3,210
Ellicott Creek	2,345	739	Gill Creek (1)	18	126
Wilson Harbor	3,374	572	Gill Creek (3)	12,162	4,330
Olcott Harbor	10,692	2,471	Black Lake	594	197
Oak Orchard Creek	667	148	Lake Erie (03)	501	43
Dunkirk Harbor	966	80	Lake 4	2,263	1,400
Lake 12	251	120	Lake 54	478	245
Lake 18	1,088	583	Lake 57	3,205	2,260
Lake 19	4,130	3,390	Lake 58	988	423
Lake 21	1,460	2,210	Lake 62	1,647	432
Lake 23	4,090	3,000	Lake 63	2,603	569
Lake 26	746	235	Lake 68	2,731	2,360
Lake 39A	4,700	4,830	Lake 69	2,480	1,420
Lake 45	4,330	4,320	Lake 71	1,690	1,630
Lake 51	196	104	Lake 72	4,370	8,610
Lake 53	322	176			

Table 1 - Dioxin and Furan Homolog Totals

*elevated levels - red average levels -blue

Toxic Equivalency

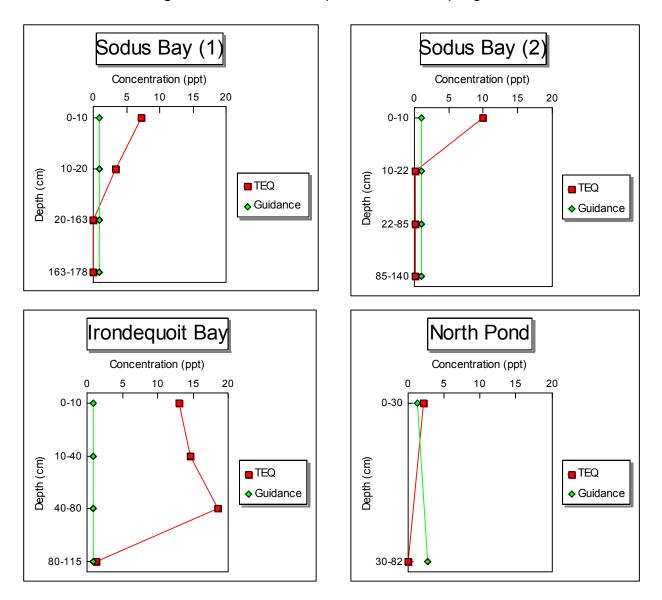
Another process for assessing the toxicity of the measured concentration of dioxin and furan in a particular sample is the toxic equivalency. This is a methodology that quantifies the toxicity of 2,3,7,8-substituted dioxin and furan congeners by proportioning their toxicities to 2,3,7,8-TCDD. These individual values can then be summed with the total Toxic Equivalency Quotient (TEQ) representing the overall toxicity of the various 2,3,7,8-congeners. The toxic equivalency factors used for comparing TEQ's to the NYSDEC Water Quality Criteria are the International Toxicity Equivalency Factors (ITEF) used by both the USEPA, the New York State Department of Health and the New York State Department of Environmental Conservation Water Quality Regulations for Surface and Groundwaters. New TEF values (1999) developed by the World Health Organization (WHO) are also presented in this report for calculation of TEQ's in sediment. For this report, all comparisons to criteria and standards use the existing (ITEF) toxicity factors whereas all graphs of TEQ data use the new WHO toxicity factors. In Tables 2 and 3, both values are presented. Table 2 presents the TEQ's for Tributaries to Lake Ontario and other sampled sites. Table 3 presents the TEQ's for those sites sampled in Lake Ontario.

The toxicity equivalency quotients can be compared to human health and wildlife bioaccumulation sediment guidance values (based on 1994 WHO TEF's) as presented in the DEC publication Technical Guidance for Screening Contaminated Sediments (1998). These values are based on equilibrium partitioning methodology and are a function of the organic carbon content of the sediment being evaluated. Those TEQ's that exceed the wildlife bioaccumulation guidance values are highlighted in blue (see Tables 2 and 3) and the sample exceeding the human bioaccumulation guidance value is highlighted in red.

The TEQ's in 45 of the 63 sediment samples exceeded the wildlife bioaccumulation sediment guidance values. The sample collected at the Pettit Flume site exceeded both the wildlife and human bioaccumulation sediment guidance values.

Site	ITEF TEQ (ppt)	WHO TEQ (ppt)	Site	ITEF TEQ (ppt)	WHO TEQ (ppt)
Dunkirk Harbor	4.0	3.6	Irondequoit Bay (0-10)	13.9	13.0
Cattaraugus Creek	0.0	0.7	Irondequoit Bay (10-40)	17.3	14.6
Lake Erie (03)	2.6	2.5	Irondequoit Bay (40-80)	25.6	18.6
Erie Basin Marina	56.8	51.5	Irondequoit Bay (80-115)	1.25	1.27
Buffalo Ship Canal	18.9	18.7	Sodus Bay (2) (0-10)	9.8	10.0
Lake Erie (06)	4.4	4.2	Sodus Bay (2) (10-22)	0.3	0.2
Sandy Creek	1.0	0.8	Sodus Bay (2) (22-85)	0.1	0.1
Salmon Creek	0.3	0.2	Sodus Bay (2) (85-140)	0.1	0.1
Oswegatchie River	4.6	4.1	Ellicott Creek	19.6	19.9
Black River	23.6	19.9	Wilson Harbor	15.6	14.7
St. Lawrence	6.8	7.1	Olcott Creek	40.0	32.8
Sodus Bay (1) (0-10)	7.3	7.1	Johnson Creek	1.7	1.6
Sodus Bay (1) (10-20)	3.6	3.3	Oak Orchard Creek	3.9	3.6
Sodus Bay (1) (20-163)	0.1	0.0	Sterling Creek	0.2	0.2
Sodus Bay (1) (163-178)	0.1	0.0	Black Lake	5.2	4.8
North Pond (0-30)	2.1	2.1	Bottle Brook	0.0	0.0
North Pond (30-82)	0.0	0.0	Ley Creek	0.2	0.2
Gill Creek (1)	0.0	0.1	Pettit Flume	14,861.0	14,743.7
Gill Creek (2)	0.0	0.1	Cayuga Creek (1)	6.5	5.8
Gill Creek (3)	151.5	147.6	Cayuga Creek (2)	226.2	230.5
Eighteenmile Creek	151.1	108.7			

Table 2 - Toxic Equivalency at Sampled Sites


blue - exceeds NYSDEC wildlife bioaccumulation criteria red - exceeds NYSDEC human bioaccumulation criteria

Site	ITEF TEQ (ppt)	WHO TEQ (ppt)	Site	ITEF TEQ (ppt)	WHO TEQ (ppt)
4	50.0	51.4	54	3.5	3.4
11	2.2	2.3	57	6.4	6.5
12	5.3	5.6	58	9.4	9.5
18	22.9	22.9	62	77.4	78.1
21	76.4	76.8	63	15.3	15.1
23	100.0	100.3	68	12.9	12.5
26	8.9	8.7	69	20.1	19.2
39A	153.3	154.6	71	88.4	88.4
45	133.3	133.6	72	281.5	282.6
51	3.5	3.4	74	3.4	3.4
53	6.4	6.5	75	2.1	2.2

Table 3 - Toxic Equivalency at Sites in Lake Ontario

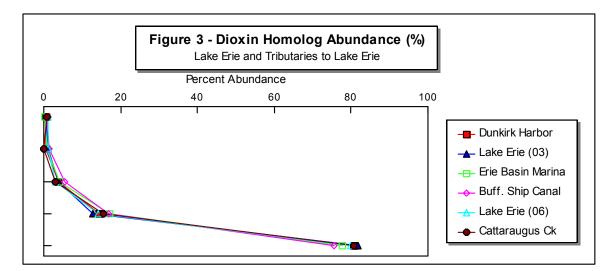
Blue - exceeds wildlife bioaccumulation values

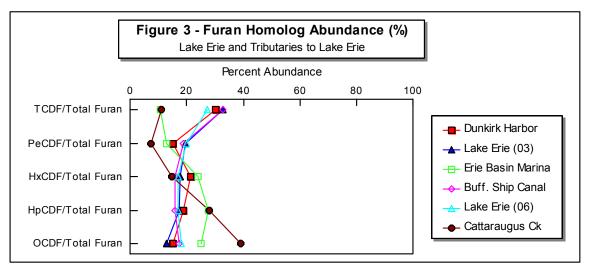
The 2,3,7,8 TCDD TEQ's were plotted versus depth for the core samples collected in Irondequoit Bay, North Pond and the two locations in Sodus Bay (Figure 2). In both of the Sodus Bay samples, the toxic equivalence decreased with depth in the core samples. In the Irondequoit Bay core sample, the toxic equivalence increased with depth up to a depth of 80 centimeters. The deepest section of the core 80 to 115 cm had the lowest toxic equivalence. The North Pond core sample proved to be representative of a "clean" lake backwater area with very low toxic equivalence from the surface to the bottom of the core. The core samples were sent for radio-dating using cesium 137, beryllium 7 and lead 210. The results of the radio-dating are not yet available. When available, the radio-dating results will be used to provide time identifiers to the strata in these cores.

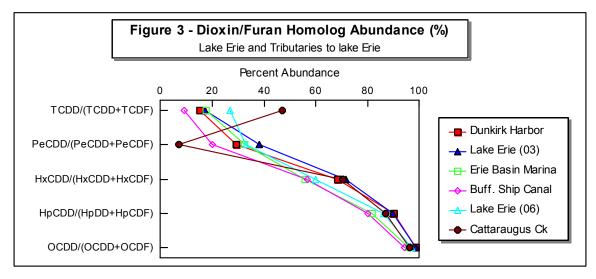
*Guidance - Wildlife Bioaccumulation Guidance value calculated using NYSDEC Division of Fish and Wildlife Technical Guidance for Screening Contaminated Sediments

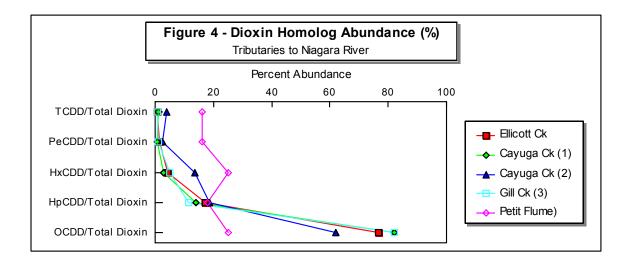
Percent Abundance Patterns

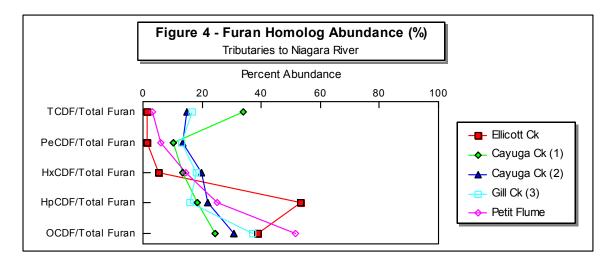
A third process for evaluating the dioxin data are the percent abundance patterns of 2,3,7,8-substituted congeners, homolog totals and toxic equivalency quotients. Percent abundance patterns are useful in characterizing the composition of complex compounds such as dioxins, furans, and PCB's. Percent abundances are calculated by dividing each individual 2,3,7,8-substituted congener concentration, homolog total or TEQ value by a representative total. These percent abundance values can then be arranged in a fixed sequence which establishes a pattern. This pattern can be used to compare the similarity or divergence of the analytical results of multiple samples.

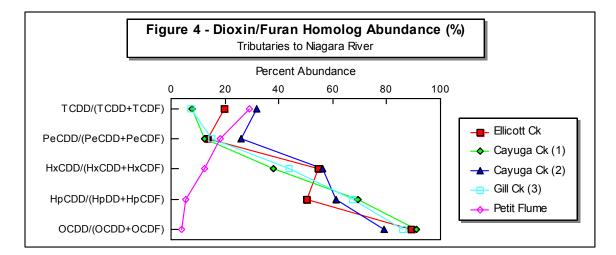

While the percent abundance patterns may provide insight into the complex realm of dioxin and furan characteristics, it must be remembered that there are 75 dioxin congeners (7 of which are 2,3,7,8-substituted) and 135 furan congeners (10 of which are 2,3,7,8-substituted). Furthermore, only the tetra- through octa- homolog totals are used in these homolog percent abundance calculations. The analytical results used to characterize the dioxins and furans represents only a fraction of the total dioxin or furan mass.


Dioxin/Furan Homolog Percent Abundance Patterns

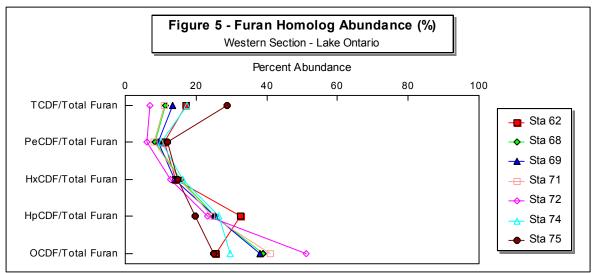

Graphs of dioxin, furan and dioxin/furan homolog percent abundance patterns were created for different sections throughout the study area. A separate graph was created for an eastern, central and western section of Lake Ontario, Lake Erie and tributaries to Lake Erie, tributaries to Niagara River and to Lake Ontario and of Lake Ontario outlet and backwater areas. A cursory evaluation of the homolog percent abundance graphs was then undertaken. A more detailed assessment of these percent abundance patterns, and their usefulness in identifying possible sources of the dioxin/furan, will be conducted in the future.

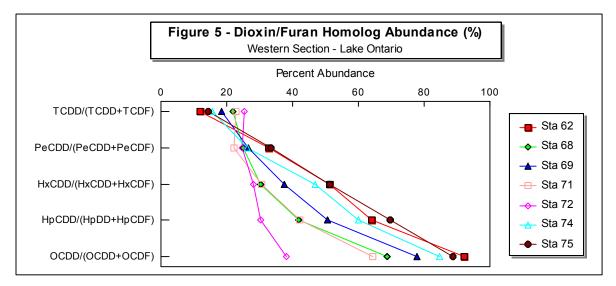

The graphs indicate that the dioxin homolog percent abundance patterns are very consistent throughout the locations studied, with the octa-chlorodioxin dominating. The exception to this pattern occurs only in the Cayuga Creek (2) and Pettit Flume samples. Octa-chlorodioxin is thought to be produced by multi-combustion processes and the production of pentachlorophenol. The furan homolog and the dioxin/furan ratio percent abundance patterns demonstrate considerable variability and these graphs will likely be useful for source identification and interpretation.

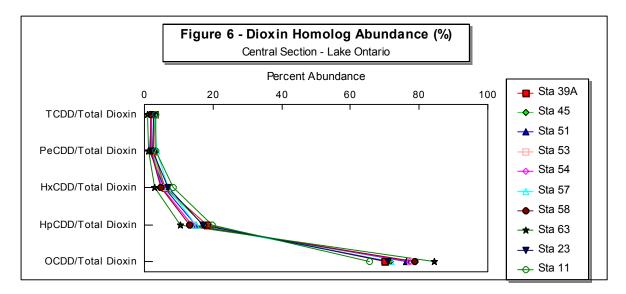

Generally, for the dioxin/furan ratio percent abundance, the furan mass for the tetra- and penta- homolog is much greater than the dioxins. For the hepta- and octa-homologs, the dioxins dominate. A characteristic of the Lake Ontario tributaries sampled is that for the furan homolog percent abundance there is a greater percentage of hepta-homolog relative to the percentage of octa- homolog. The hepta- homolog is thought to be a characteristic of contamination caused by sintering plants with the iron/steel industry.

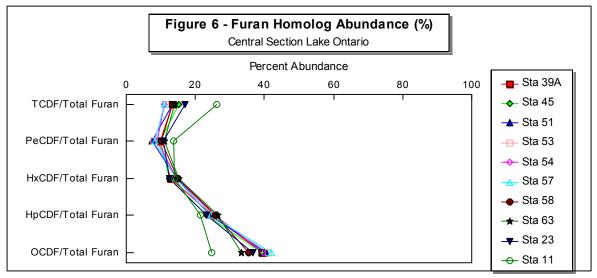


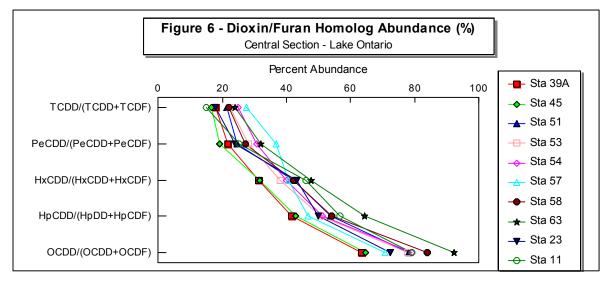


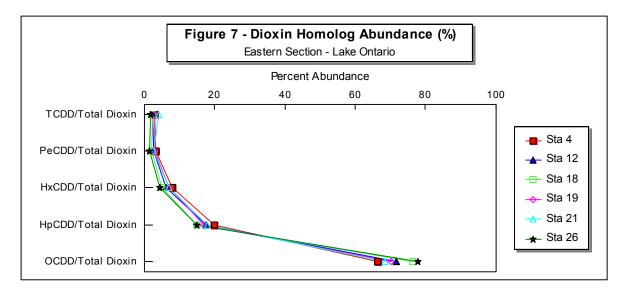


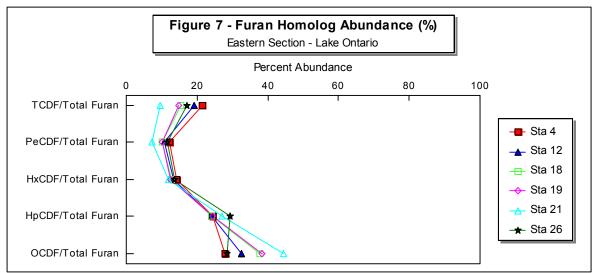


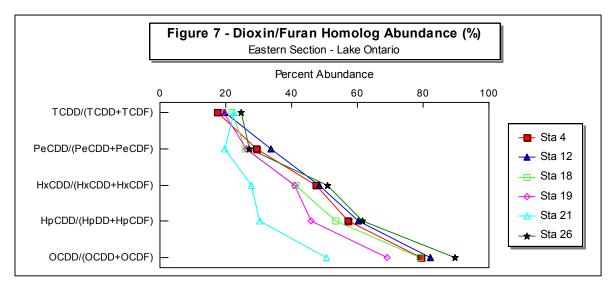


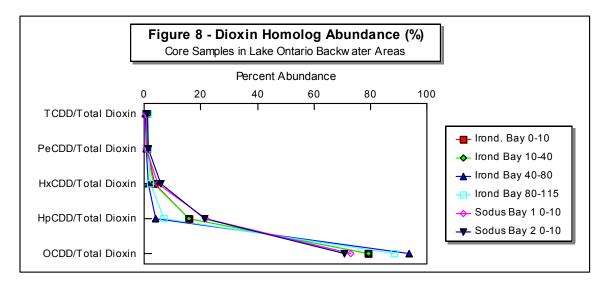


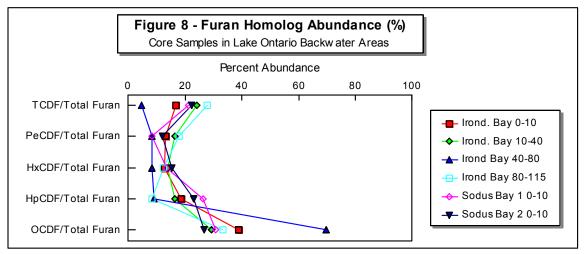


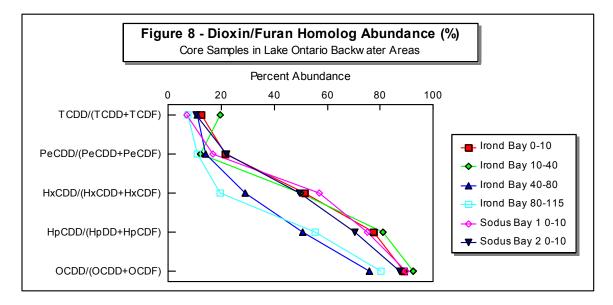


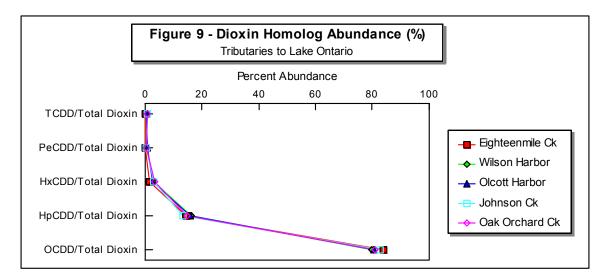


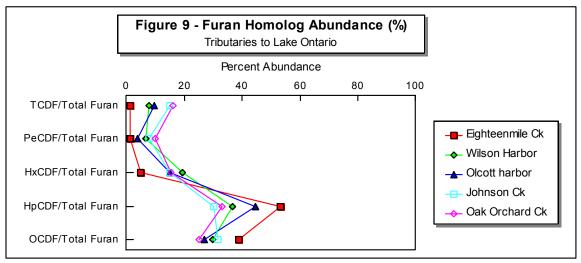


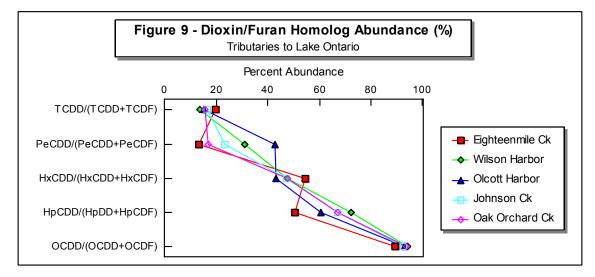


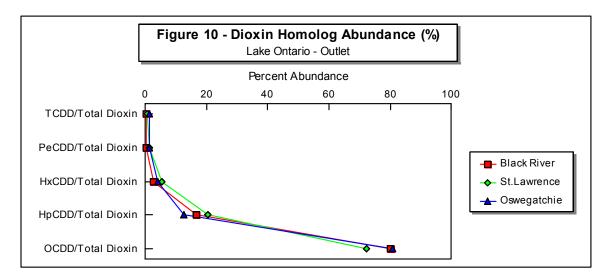


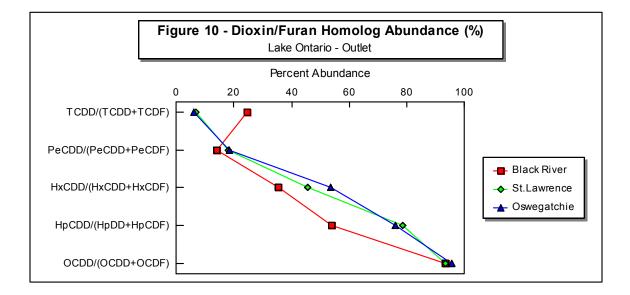


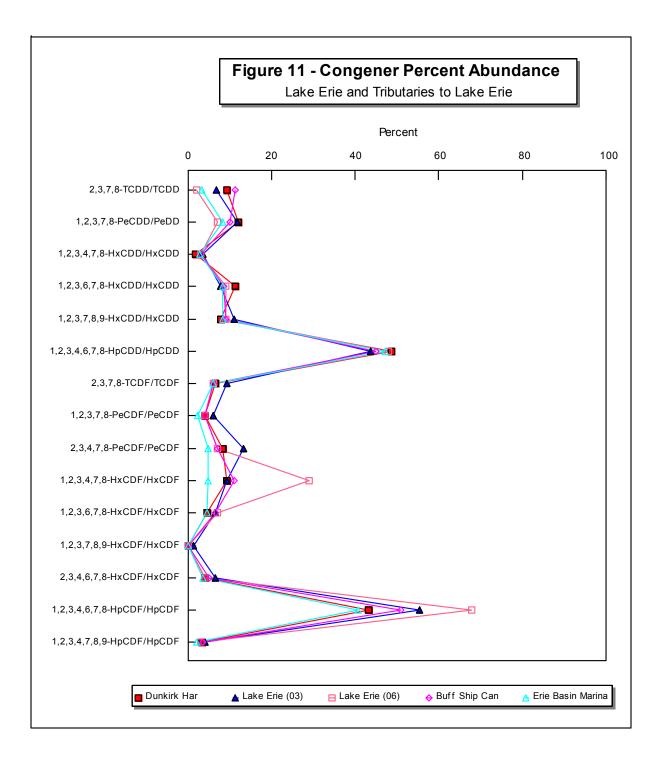


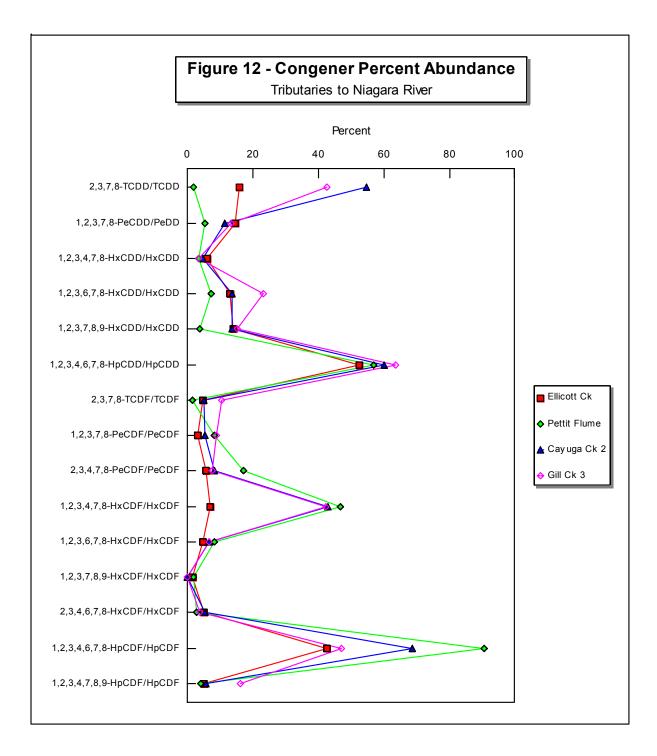




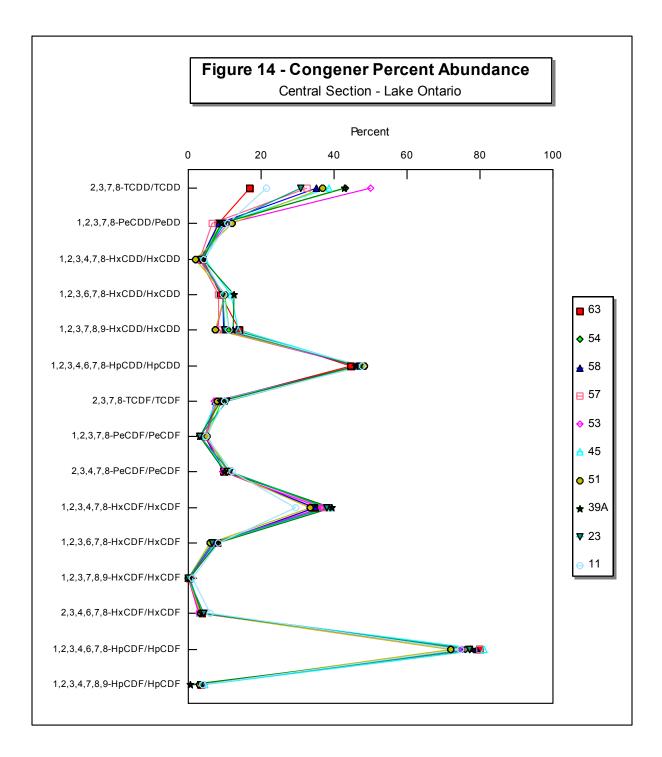


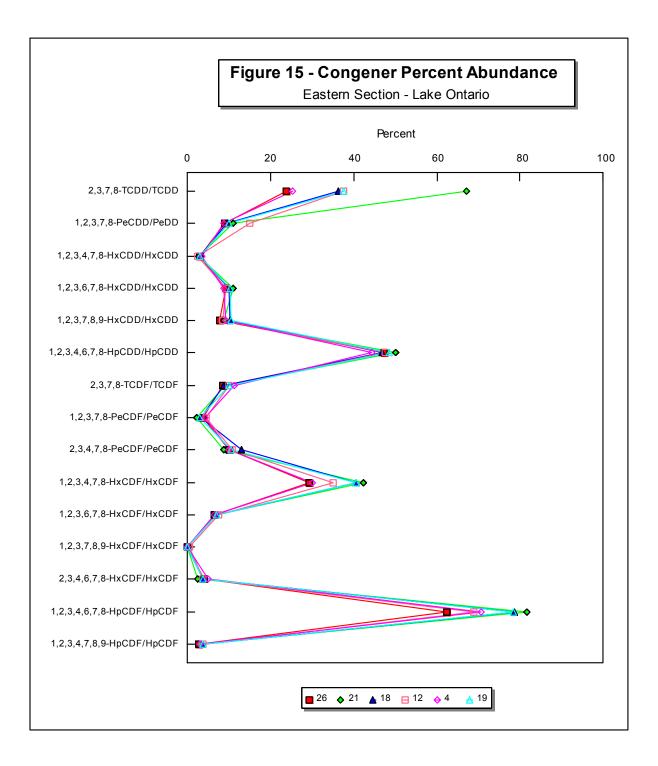


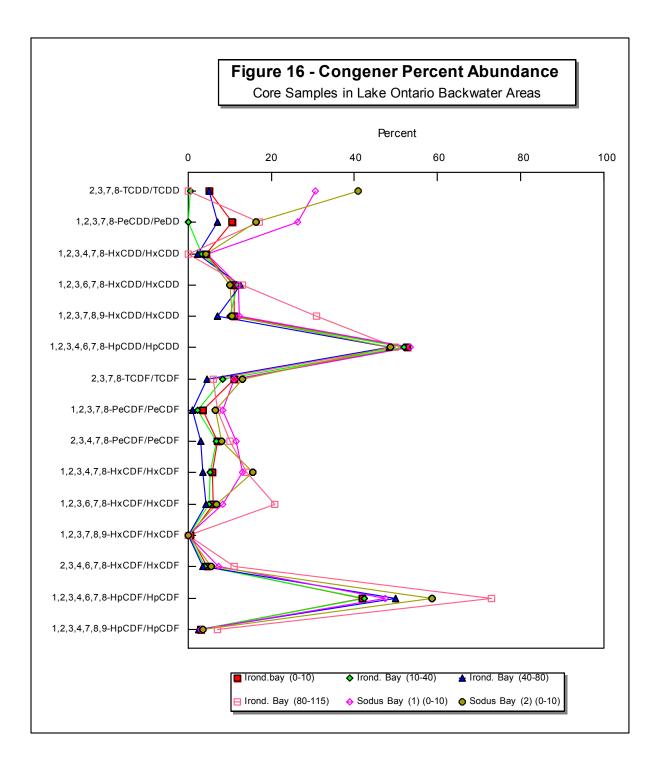

2,3,7,8-Substituted Congener Percent Abundance Patterns

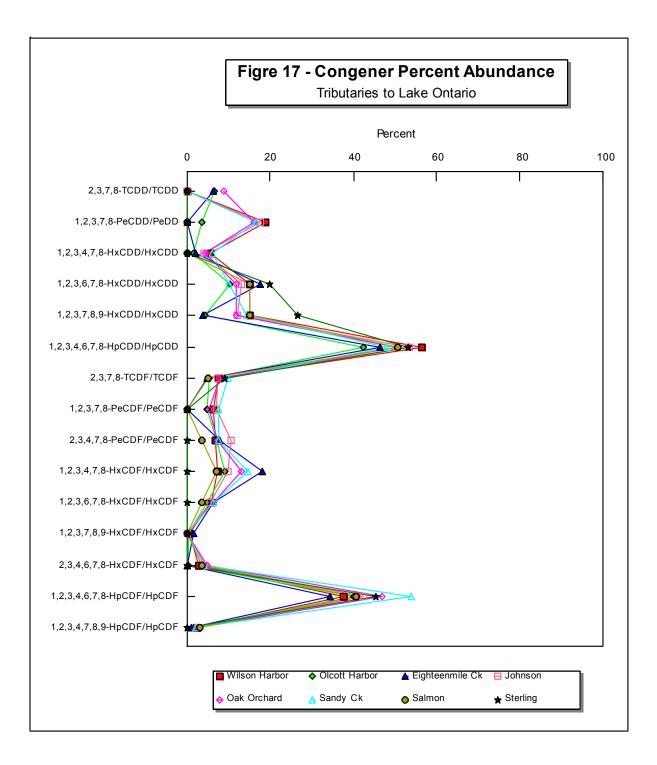

Graphs of the 2,3,7,8-substituted congener percent abundance patterns were created using the analytical results. Similar to the dioxin/furan homolog percent abundance pattern graphs, a separate graph was created for an eastern, central and western section of Lake Ontario, Lake Erie and tributaries to Lake Erie, tributaries to Niagara River and to Lake Ontario and of Lake Ontario outlet and backwater areas. A cursory evaluation of the 2,3,7,8-substituted congener percent abundance graphs was then undertaken. A more detailed assessment of these percent abundance patterns, and the relationship to identifying possible sources of the dioxin/furan, will be conducted in the future.

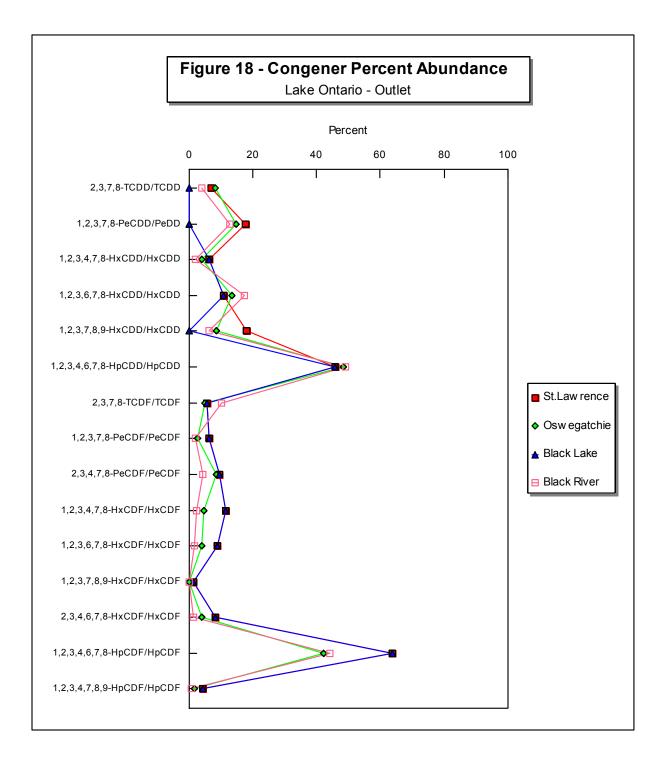
Two consistent peaks (high percent abundance values) were identified, one for 1,2,3,4,6,7,8-HpCDD and one for its sister congener 1,2,3,4,6,7,8-HpCDF. This is not unexpected, however, since the 1,2,3,4,6,7,8-HpCDD congener is one of two isomers that make up the hepta-dioxin homolog total and the furan congener is one of four making up the hepta-furan homolog total. The Lake Ontario sediment samples have additional peaks for the 2,3,7,8-TCDD and 1,2,3,4,7,8-HxCDF congeners. The 2,3,7,8-TCDD congener is thought to be produced from 2,4,5-T production and pulp bleaching processes.

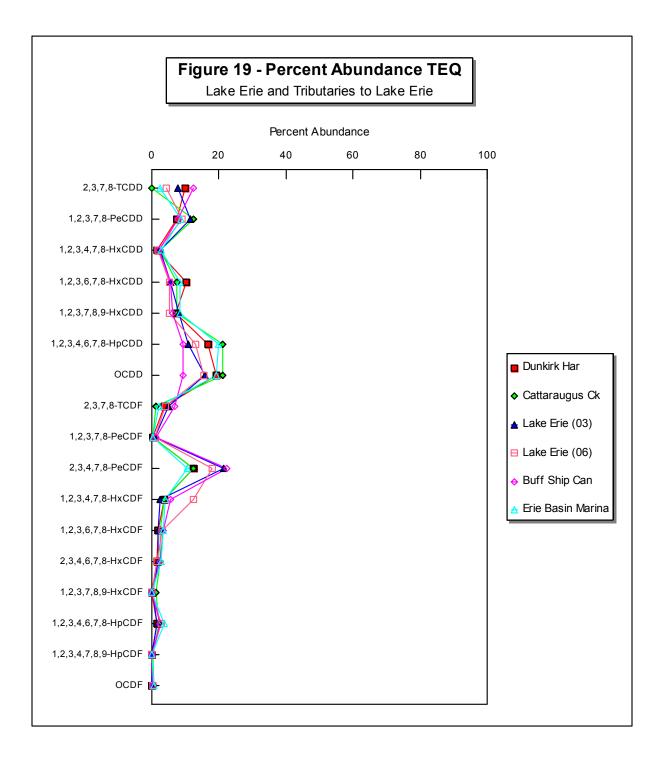

The Lake Erie, Cayuga Creek, Gill Creek and Petit Flume samples are the only locations where there is a peak of 1,2,3,4,7,8-HxCDF. Aside from the Lake Ontario samples, the only locations with a peak of 2,3,7,8-TCDD are the Cayuga Creek, Gill Creek and Sodus Bay. <u>These are additional pieces of information linking the Cayuga Creek, Gill Creek, Gill Creek and Pettit Flume samples to the dioxin/furan concentrations in the Lake Ontario samples</u>. This is a tentative observation based on the limited data set available. A complete set of Lake Ontario tributary data would have to include areas such as the Wellington Canal, Hamilton Harbor, etc.

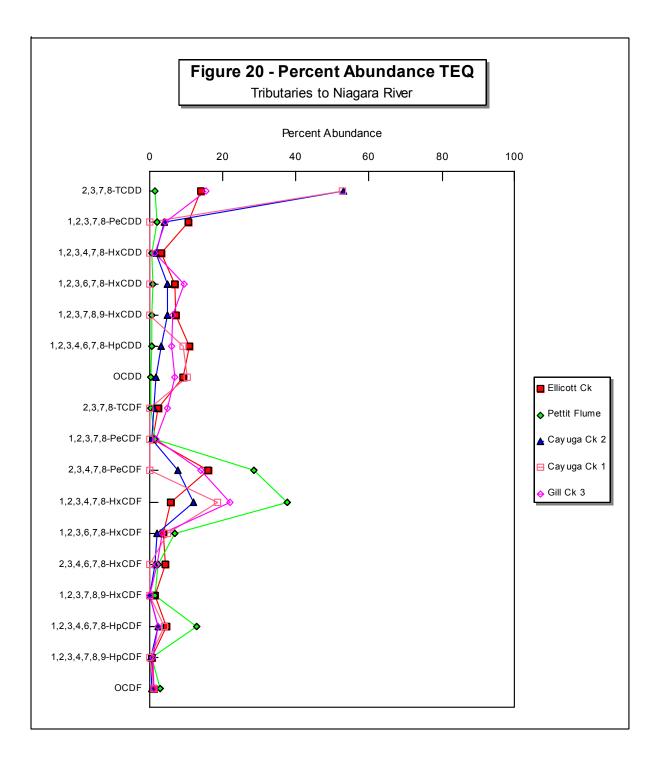

A very different percent abundance pattern was observed in the deeper section from the Irondequoit Bay core sample (80 - 115 cm section). There is a peak for the congener 1,2,3,6,7,8-HxCDF. This peak is found only in this sample.

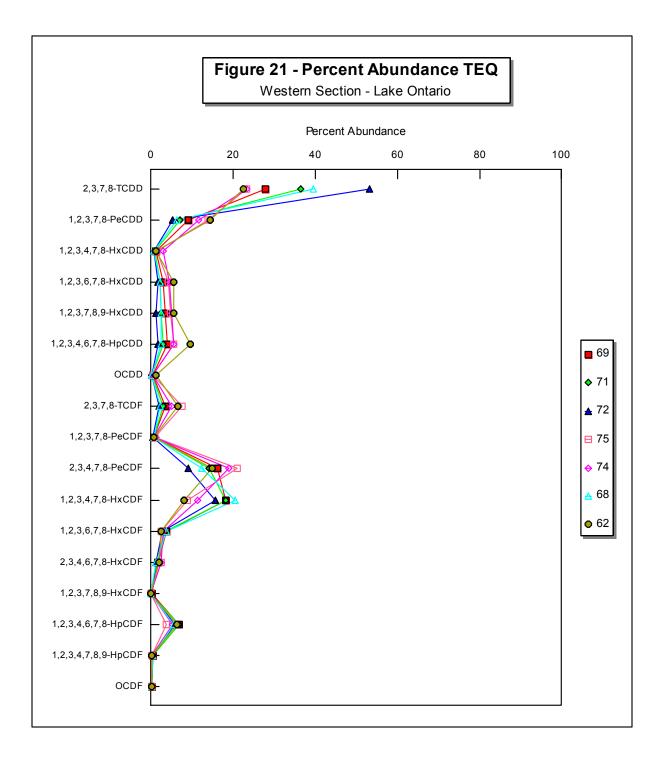


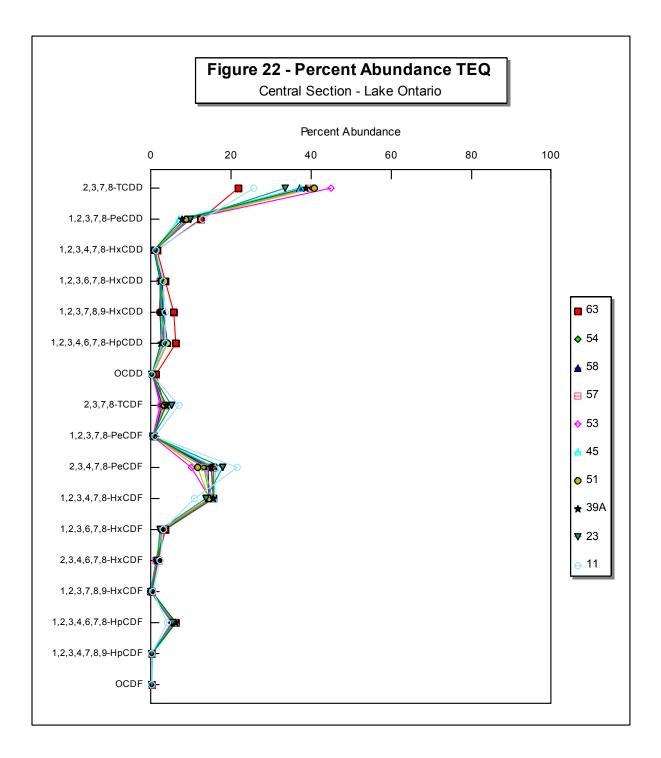


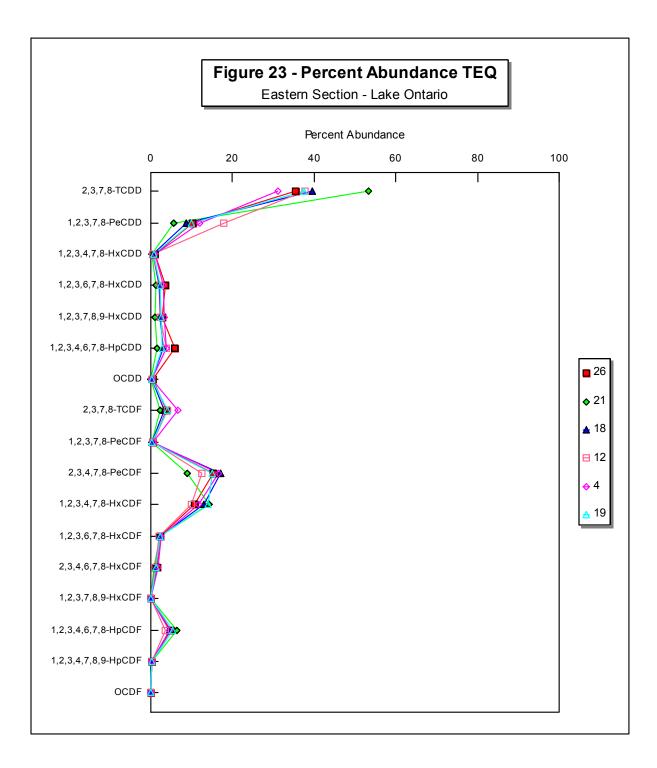


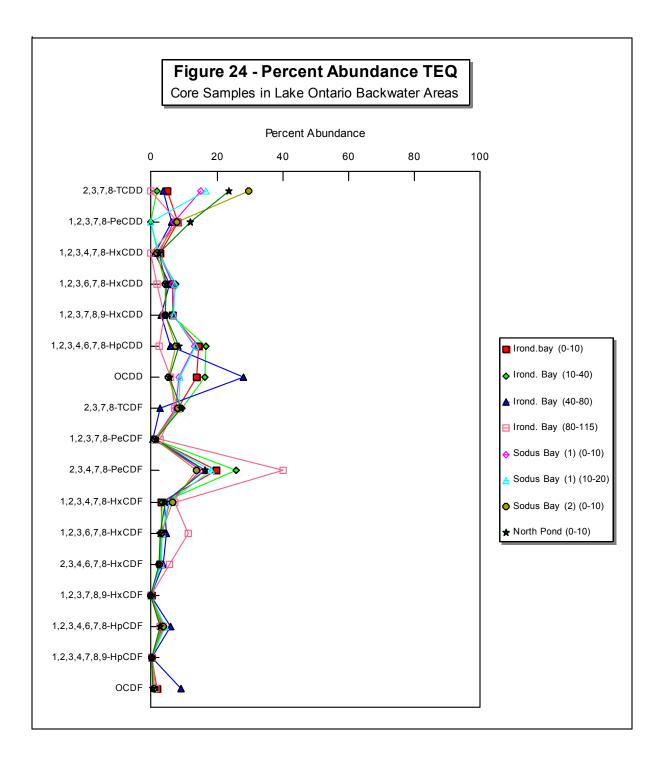


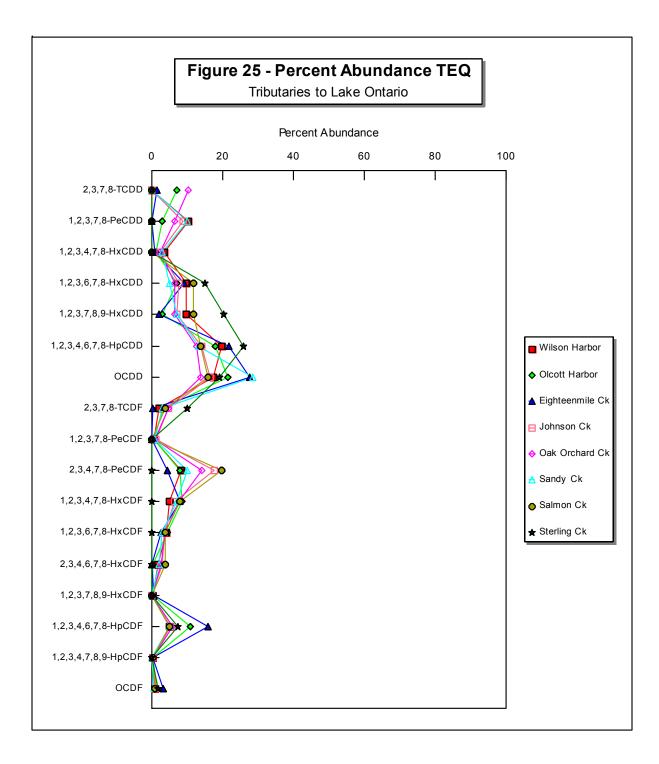


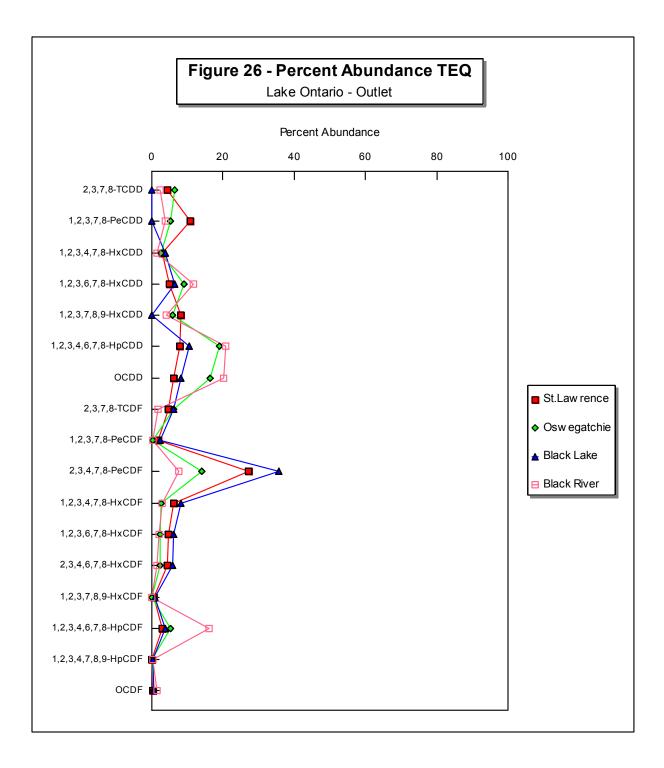

TEQ Percent Abundance Patterns


Graphs of toxic equivalency percent abundance patterns were created using the analytical results. Similar to the dioxin/furan homolog percent abundance pattern graphs, a separate graph was created for an eastern, central and western section of Lake Ontario, Lake Erie and tributaries to Lake Erie, tributaries to Niagara River and to Lake Ontario and of Lake Ontario outlet and backwater areas. A cursory evaluation of the TEQ percent abundance graphs is presented. A more detailed assessment of these percent abundance patterns, and the relationship to identifying possible sources of the dioxin/furan, will be conducted in the future.


The graphs indicate that the Cayuga Creek and Pettit Flume samples (tributaries to the Niagara River) had identifying patterns that separate them from the remaining samples. The Cayuga Creek samples had high percentages of 2,3,7,8-TCDD while the Pettit Flume had a relatively high percentage of 1,2,3,4,7,8-HxCDF. The Cayuga Creek is located in the vicinity of Love Canal and the Pettit Flume received discharges from the Occidental Chemical, Durez Division. <u>Surficial sediment samples collected in the western, central and eastern sections of Lake Ontario all exhibit the same characteristics of the Cayuga Creek and Pettit Flume samples with peaks at 2,3,7,8-TCDD and 1,2,3,4,7,8-HxCDF. The samples collected from Lake Erie and the tributaries to Lake Ontario do not exhibit these characteristic peaks.</u>







II. Water Column

One liter, grab water column samples were collected at nine sites. These sites corresponded to nine of the surficial sediment sites which were sampled for sediment, water and macroinvertebrate tissue. The TEQ's calculated from the analytical results are contained in Table 4. The New York State ambient water quality standard for human fish consumption in all classes of water is 0.0006 ppt. This standard is based on the Toxic Equivalency Factor multiplied by the Bioaccumulation Equivalency Factor (see NYSDEC Division of Water TOGS 1.1.1). As can be seen from the Table, the results of the TEQ multiplied by the BAF exceed the water quality standards at all water sample locations (see QA/QC Summary for further details).

Site	ITEF TEQ (ppt)	WHO TEQ (ppt)	WHO TEQ x BAF (ppt)
Salmon Creek	0.09	0.06	0.003
Sandy Creek	0.10	0.07	0.003
Cattaraugus Creek	0.03	0.02	0.001
Olcott Harbor	0.80	0.50	0.161
Johnson Creek	0.03	0.02	0.001
Oak Orchard Creek	0.97	1.06	1.393
Sterling Creek	0.08	0.08	0.005
Black Lake	0.58	0.57	0.452
Oswegatchie River	0.35	0.33	0.302

Table 4 - Water Column TEQ Data

*Red - exceeds water quality standard of 0.0006 ppt

III. Fish Tissue

Young of year fish were collected at many sites by the NYSDEC Division of Fish and Wildlife as part of the Lake Ontario Supplemental Biomonitoring Project. Seventeen frozen tissue samples were selected for analysis of dioxin/furan concentration. Only two sites correspond to locations where sediment, water column and macroinvertebrate tissue were collected (Oswegatchie River and Oak Orchard Creek). The results are contained in Table 5. The Division of Fish and Wildlife guidance of 2.3 ppt TEQ for wildlife consumption of fish was only exceeded in the Perch River sample. There were no exceedances of the Food and Drug Administration (FDA) action levels for poisonous and deleterious substances in fish and shellfish for human consumption (25 ppt).

Site	Fish	ITEF TEQ (ppt)	WHO TEQ (ppt)	% lipid
Eighteenmile Creek	Spottail shiner	0.1	0.05	1.9
Raquette River (mouth)	Bluntnose	0.098	0.049	0.9
Genesee River	Spottail shiner	0.047	0.024	0.4
Grasse River (dam)	Emerald shiner	0.063	0.032	1.0
Grasse River (mouth)	Emerald shiner	1.16	0.855	2.4
Dunkirk Harbor	Emerald shiner	0.08	0.04	5.9
Buffalo River	Bluntnose	0.03	0.028	0.0
Black River Bay	Emerald shiner	0.19	0.095	3.0
Oswego River	Spottail shiner	0.036	0.018	1.6
Oswegatchie River	Bluntnose	0.11	0.055	n/a
Perch River	Bluntnose	1.82	2.33	1.8
Salmon River	Bluntnose	0.10	0.05	1.9
Wine Creek	Creek chub	0.27	0.15	2.2
Sodus Creek	Fathead minnow	0.10	0.06	1.6
Irondequoit Creek	Tessellated darter	0.01	0.001	2.5
Oak Orchard Creek	Creek chub	1.17	0.84	3.3
Eighteenmile Creek	Bluntnose	1.04	0.56	1.0

*New TEQ using WHO TEF's for fish

IV. Macroinvertebrate Tissue

Macroinvertebrate tissue samples were collected at eight sites. These eight sites were the same sites as the previously reported water and surficial sediment sample sites. Staff was unable to collect a macroinvertebrate tissue sample at the Cattaraugus Creek. Crayfish samples were collected using kick sampling, snails and clams were collected using nets and the zebra mussels were collected by picking them off rocks. The macroinvertebrate tissue samples collected did not contain substantial concentrations of dioxin or furan (see Table 6). All concentrations of 2,3,7,8-TCDD were less than 5 ppt. This 5 ppt guideline was adapted from the 10 ppt guideline for fish proposed by Eisler of the U.S. Fish and Wildlife Service in a 1968 paper Dioxin Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review.

Site	Туре	ITEF TEQ (ppt)	WHO TEQ (ppt)	% lipid
Oak Orchard Creek	zebra mussels	0.018	0.013	n/a
Oswegatchie River	crayfish	0.489	0.484	2.4
Olcott Harbor	crayfish, snail	0.62	0.57	0.75
Sandy Creek	crayfish	0.059	0.054	0.42
Black Lake	snail	0.068	0.052	0.76
Salmon Creek	crayfish	0.098	0.094	1.6
Sterling Creek	crayfish	0.011	0.007	0.45
Johnson Creek	crayfish, clam	0.16	0.16	0.60

Table 6 - TEQ Data for Macroinvertebrate Tissue

Apparent inconsistencies among the analyses of the different medium exist and are not currently resolvable. For example, all water samples exceeded the ambient water quality standard for human consumption of fish, whereas no sampled macroinvertebrates (at corresponding sites) approached the 5 ppm guideline. For fish filet data, sample concentrations at the two corresponding sites were not close to the FDA action level of 25 ppt.

The multi media database needs to be expanded so that the relationships of the dioxin and furan concentrations in the water column, sediment and biota and the usefulness of the various standards and guidelines can be studied in greater detail.

QA/QC Summary

The analytical laboratory QA/QC for Method 1613B includes an Internal Standard Spike, as part of each sample, and a Method Blank, also with an Internal Standard Spike, run with each sample batch. These Internal Standard Spikes consist of 15 carbon-13 and one chlorine-37 labeled isotopes. The method acceptable criteria for the percent recoveries for these Internal Standard Spikes varies from 17-35% to 123-197%. For our evaluation, we will also apply a more stringent acceptable percent recovery range of 60% to 150%.

As far as the Method Blanks are concerned, desired results would be for all analyses to be less than the analytical reporting limit. If any "positive" detection of an analyte occurs, but it is less than 10% of the lowest corresponding 2,3,7,8-substituted congener result for that particular batch, then this would be considered acceptable. If, however, a positive blank result is greater than 10% of its corresponding analytical result, than that result should be labeled as suspicious.

Sediments Samples

All percent recoveries of the labeled isotopes data for the sediment samples fell within the limits set by Method 1613B. The vast majority also fell within our more stringent evaluation range. The exceptions were all less than 60%. There were several detections of PCDF, HxCDF, HpCDF and OCDD congeners in the Method Blanks, but at concentrations not greater than 10% of their corresponding batch congener result.

Fish and Macroinvertebrate Tissues

All percent recoveries of the labeled isotopes for the biota tissue samples were within the limits set by Method 1613B and within our more stringent evaluation range. There were singular detections of OCDD and HpCDF congeners in one of the method blanks, but they were less than 10% of the lowest OCDD and HpCDF concentration reported in the corresponding sample batch.

Water Samples

All percent recoveries of the labeled percent recovery data for the water samples fell within the limits set by Method 1613B. There were, however, numerous exceptions (below 60%) to our more stringent evaluation range. The Method Blanks for the water samples contained positive detections for OCDD (5.5 ppq) and OCDF (1.8ppq) or 1,2,3,4,6,7,8- HpCDD (1.5ppq) and 1,2,3,7,8,9-HxCDD (1.1ppq). If this Method Blank contamination was introduced into the analytical process by the blank water, then the TEQ's calculated for the water samples would not be altered. If the contamination was introduced by the "process" then this would likely impact the TEQ calculations.

The toxic equivalencies for the nine water samples were re-calculated, eliminating the total mass of the contaminant congener. All but the Cattaraugus Creek sample continued to exceed the New York State Water Quality Standard for the protection of humans consuming fish.

<u>References</u>

- Eisler, R. 1986. Dioxin hazards to Fish, Wildlife and Invertebrates: A Synoptic Review. U.S. Department of the Interior, Fish and Wildlife Service, Biological Report 85 (1.8):37 pp.
- Estabrooks, F., Litten, S., Anderson, B., NYSDEC. 1994. An Investigation of the Dioxin/furan Concentrations in the Sediments of Eighteenmile Creek and the Erie Canal Near Lockport, New York. NYSDEC, Albany, N.Y.
- Lexen, Karin, Cynthia de Wit, Bo Jansson, Lare-Owe Kjeller, Sten-Erik Kulp, Karin Ljung, Guntille Sonderstrom, and Christoffer Rappe. "Polychlorinated Dibenzo-pdioxin and Dibenzofuran Levels and Patterns in Samples from Different Swedish Industries Analyzed Within the Swedish Dioxin Survey", <u>Chemosphere</u>, V.27, Nos. 1-3, pg. 163-170, 1993.
- NYSDEC. 1999. Technical Guidance for Screening Contaminated Sediments. NYSDEC Division of Fish and Wildlife. Albany, N.Y.
- NYSDEC. 1991. Water Quality Regulations for Surface Waters and Groundwaters, 6NYCRR Parts 700-705. NYSDEC Division of Water. Albany, N.Y.
- Rappe, Christofer. "Dioxin, Patterns and Source Identification", <u>Fresnius Journal of</u> <u>Analytical Chemistry</u>, 348, pg. 63-75, 1994.
- Rappe, Christofer, Lars-Owe Kjeller, Sten-Erik Kulp, Cynthia de Wit, Indrid Hasselsten, and Ola Palm. "Levels, Profile, and Pattern of PCDDs and PCDFs in Samples Related to the Production and Use of Chlorine", <u>Chemosphere</u>, V. 23, Nos. 11-12, pg. 1629-1636, 1991.
- Rappe, Christofer, R. Andersson, M. Bonner, K. Cooper, H. Fielder, F. Howell, S.E. Kulp, and C. Lau. "PCDDs and PCDFs in Soil and River Sediment Samples from a Rural Area in the United States of America", <u>Chemosphere</u>, Vol. 34, Nos. 5-7, pg. 1297-1314, 1997.
- Rappe, Christofer. "Sources of Exposure, Environmental Concentrations and Exposure Assessment of PCDDs and PCDFs", <u>Chemosphere</u>, V. 27, Nos. 1-3, pg. 211-225, 1993.
- USEPA. 1992. National Study of Chemical Residues in Fish, Volume II. US Environmental Protection Agency. Washington D.C.
- USEPA. 1990. Lake Ontario TCDD Bioaccumulation Study Final Report. US Environmental Protection Agency. Washington D.C.

APPENDIX A

Dioxin in Trib	outaries Study				
Allconcentrat	ions pg/g, dry weight				
	Station	0 sw egato		Black River	StLaw rence
Analyte	Sam ple Type Laboratory	Sediment Axys	t	Sedim ent Axys	Sedin ent Axys
Ana A G	Labora DTy	ллур			TAYD
2,3,7,8-TCDD		0.3		0.6	0.3 *
1,2,3,7,8.₽eC	DD		*	1.8	1.5
1,2,3,4,7,8Hx	CDD	1.2		3.5	2.0
1,2,3,6,7,8Hx	CDD	4.2 *	*	28	3.4
1,2,3,7,8,9Hx	CDD	2.7		9.9	5.6 *
1,2,3,4,6,7,8 .	IpCDD	87		490	55
2,3,7,8-TCDF		2.9		4.7	3.3
1,2,3,7,8-₽eC	DF	0.4		1.7	2.4
2,3,4,7,8-₽eC	DF	1.3 '	*	3.7	3.7
1,2,3,4,7,8Hx	CDF	1.3 '	*	7.3	4.3
1,2,3,6,7,8Hx	CDF	1.1 '	*	5.2	3.3
1,2,3,7,8,9Hx	CDF <	0.3		<1.8	0.5
2,3,4,6,7,8Hx	CDF	1.1		3.9	3.1
1 ,2 ,3 ,4 ,6 ,7 ,8+	IpCDF	24		380	21
1 ,2 ,3 ,4 ,7 ,8 ,9+	IpCDF	1.0		6.7	1.5 *
TCDDs (total)		3.6		15	4.3
PeCDDs (tota	1)	3.4		14	8.4
HxCDDs (tota	D	31		160	31
HpCDDs (tota	D	180		1000	120
OCDD		750		4800	430
TCDFs (total)		57		46	58
PeCDFs (tota)	Ŋ	15		87	38
HxCDFs (tota)	D	27		290	37
HpCDFs (tota)	D	57		860	33
OCDF		35		350	31
Data Summar	v(1)				
Data Summar	ý (±)				
Tetra thru 0 ct	a Hom obg Totals				
	Dixin hom obgs	968.0		5,989.0	593.7
	Furan hom obgs Sum	<mark>191.0</mark> 1,159.0		1,633.0 7,622.0	197.0 790.7
		1,200.0			
	Toxic Equivalence(2)	4.6		23.6	6.8
2,3,7,8-TCDD	Toxic Equivalence(3)	4.1		19.9	7.1
DFW Site Spe 2,3,7,8-TCDD	ecific Sedim ent Criteria for (4)				
H um an B io	accum ulation(sc=10,000 pg/gOC)	314.0		185.0	140.0
W idlife Bio	accum ulation(sc=200 pg/gOC)	6.3		3.7	2.8
Total0 rganic	Carbon (%)	3.14		1.85	1.4
10010 Igailt		J +1 1			
(1) 0 nly res	ults greater than aboratory				
reporting	g lim its used in data sum m ary.				
	onalToxicity Equivalency				
Factors (3) W HO TO	xicity Equivalency Factors				
	Division of Fish and Wildlife				
	ted but did notmeet quantification criteria				
	s Wildlife and Hum an Bioaccum ulation C ceeds Wildlife Bioaccum ulation Criteria	nteria		-Elevated percer w -Average perc	
G reen - es			rell	w - Average perc	circabundance
		46			

Dioxin in Tributaries Study All concentrations pg/g, dry weight				
A inconcentrations pg/g, dig weight				
	Irondequoit	Irondequoit	Irondequoit	nondequoit
	Bay	Bay	Bay	Bay
	0-10 cm Sediment	10-40 cm sedim ent	40-80 cm Sediment	80-115 cm Sedim ent
Analyte	Axys	Axys	Axys	Axys
2,3,7,8-TCDD	0.7	<0.3	0.9	<0.2
1,2,3,7,8-PeCDD	2.2	2.6	3.1	0.2
1,2,3,4,7,8HxCDD	3.5	3.6	2.5	<0.2
1,2,3,6,7,8HxCDD	9.1	13	14	0.2
1,2,3,7,8,9HxCDD	8.9	11	7.9	0.5
1,2,3,4,6,7,8HpCDD	200	290	150	2.8
2,3,7,8-TCDF	11	16	6.8	0.9
1,2,3,7,8-PeCDF	2.7	2.8	3.2	0.7
2,3,4,7,8-PeCDF	5.5	8.9	8.3	1.0
1,2,3,4,7,8HxCDF	4.4	5.8	9.8	0.9
1,2,3,6,7,8HxCDF	4.6	5.5	12	1.4
1,2,3,7,8,9HxCDF	0.4	<0.5	<0.9	<0.2
2,3,4,6,7,8-HxCDF	3.6	4.5	9.4	0.7
1,2,3,4,6,7,8HpCDF	46	55	150	3.3
1,2,3,4,7,8,9HpCDF	3.5	3.7	7.6	0.3
TCDDs (total)	14	46	18	1.2
PeCDDs (total)	21	18	44	1.2
HxCDDs (total)	81	110	110	1.6
HpCDDs (total)	380	560	310	5.6
OCDD	1900	2800	7200	73
TCDFs (total)	100	190	150	15
PeCDFs (total)	77	130	270	9.7
HxCDFs (total)	76	110	270	6.6
HpCDFs (total)	110	130	300	4.5
OCDF	230	230	2300	18
Data Sum m ary (1)				
Tetra thru O cta Hom obg Totals Dioxin Hom obgs	2,396.0	3,534.0	7,682.0	82.60
Furan Hom obgs	593.0	790.0	3,290.0	53.80
S um	2 ,989 .0	4,324.0	10,972.0	136.40
2,3,7,8-TCDD Toxic Equivalence(2)	13.9	17.3	25.6	1.25
2,3,7,8-TCDD Toxic Equivalence(2)	13.9	14.6	18.6	1.27
DFW Site Specific Sediment Criteria for				
2,3,7,8-TCDD (4) Hum an Bibaccum ulation (sc=10,000 pg/g0 (7)189	53.1	47.2	37.40
Wildlife Bibaccum ulation(sc=200 pg/g0C)	0.4	1.1	0.9	0.75
TotalOrganic Carbon(%)	0.189	0.531	0.472	0.37
(1) 0 nly results greater than aboratory				
reporting lim its used in data sum mary.				
(2) International Toxicity Equivalency				
Factors				
(3) W HO Toxicity Equivalency Factors (4) NYSDEC Division of Fish and W idlife				
(TINTSPEC PARTINGLE BUSING W LOLLE				
* - Peak detected but did not meet quantificat				
Blue - Exceeds W idlife and Hum an Bibaccum				ed percent abundance
<mark>G zeen – exceeds</mark> W idlife B baccum u ation Cri	tera		Yelbw - Ave	rage percent abundance
		47		

Dioxin in Tributaries Study					
All concentrations pg/g, dry weight					
	SodusBay	SodusBay		SodusBay	Sodus B
	0-10 cm	10-20 cm		20-163 cm	163-178 0
Analyte	Sedim ent Axys	Sedim ent Axys		Sediment Axys	Sedim er Axys
	-			•	-
2,3,7,8-TCDD	1.1	0.6 *	_	0.2	< 0.2
1,2,3,7,8-PeCDD	1.0	<0.2		0.2	< 0.2
1,2,3,4,7,8HxCDD	1.8	0.9 *	<	0.2	< 0.2
1,2,3,6,7,8HxCDD	4.8	2.6	<	0.2	< 0.2
1,2,3,7,8,9HxCDD	4.9	2.5	<	0.2	< 0.2
1,2,3,4,6,7,8HpCDD	96	48		1.5	1.6
2,3,7,8-TCDF	5.3	3.0	<	0.2	< 0.2
1,2,3,7,8-PeCDF	1.6 *	0.9 *	<	0.2	< 0.2
2,3,4,7,8-PeCDF	2.2	1.3	<	0.2	< 0.2
1,2,3,4,7,8-HxCDF	3.9	1.9	<	0.2	< 0.2
1,2,3,6,7,8-HxCDF	2.5	1.2	<	0.2	< 0.2
1,2,3,7,8,9HxCDF	<0.4	<0.3	<	0.2	< 0.2
2,3,4,6,7,8HxCDF	2.2 *	1.1 *	<	0.2	< 0.2
1,2,3,4,6,7,8-HpCDF	28	15	<	0.5	< 0.3
1,2,3,4,7,8,9-HpCDF	1.9	1.1 *	<	0.5	< 0.3
TCDDs (total)	3.6	<0.3	<	0.2	< 0.2
PeCDDs (total)	3.8	3.0		0.2	< 0.2
HxCDDs (total)	40	21		1.1	0.5
HpCDDs (total)	180	95	_	5.2	5.3
OCDD	610	310	_	70	68
TCDFs (total)	48	28	_	0.2	< 0.2
PeCDFs (total)	19	13		0.2	< 0.2
HxCDFs (total)	30	16		0.2	< 0.2
HpCDFs (total)	59	29	_	0.5	< 0.2
O C D F	69	32		0.8	< 0.4
	09	52		0.0	< 0.4
Data Sum m ary (1)					
Tetra thru O cta Hom o bg Totak					
D bxn Hom obgs Furan Hom obgs	837.4 225.0	429.0		76.5 0.0	73.8
Sum	1,062.4	118.0 547.0		76.5	73.8
	1,00211	01/10		1015	
2,3,7,8-TCDD Toxic Equivalence(2)	7.3	3.6		0.1	0.1
2,3,7,8-TCDD Toxic Equivalence(3)	7.1	3.3		0.0	0.0
DFW Site Specific Sediment Criteria for					
2,3,7,8-TCDD(4)					
Hum an B baccum ulation (sc=10,000 pg/gOC)	44.3	48.9		22.3	37.5
W idlife B baccum u lation (sc=200 pg/gOC)	0.9	1.0		0.4	8. 0
TotalOrganic Carbon(%)	0.443	0.489		0.223	0.375
(1) 0 nly results greater than aboratory					
reporting lim its used in data sum mary.					
(2) International Toxicity Equivalency					
Factors					
(3) W HO Toxicity Equivalency Factors (4) NYSDEC Division of Fish and W iblife					
* - Dook dotootod but did not most must first in soin.'					
* - Peak detected but did not meet quantification criteria			p 2	tod norm	anderec
Ble - Exceeds Wildlife and Hum an Bioaccum ulation Criteria Green - exceeds Wildlife Bioaccum ulation Criteria				ated percent al rerage percent	
		T CTD		-mgc penerit	
	48				

Dioxin in Tributaries Study		\square			_			
All concentrations pg/g, dry weight			_		_			
					-			
	Sodus E	Bay ((2)	Sodus Bay (2)			(2)	Sodus Bay
	0-10 cm Sedin e			10-22 cm Sedim ent	_	22-85 cm Sediment		85-140 cm Sedim ent
Analyte	Axys	nu		Axys	-	Axys		Axys
	-							•
2,3,7,8-TCDD	2.9			0.1	<	0.1	<	0.2
1,2,3,7,8-PeCDD	1.5	*	<	0.1	<	0.3	<	0.2
1,2,3,4,7,8HxCDD	1.8		<	0.4	<	0.3	<	0.2
1,2,3,6,7,8HxCDD	4.1		<	0.4	<	0.3	<	0.2
1,2,3,7,8,9HxCDD	4.3		<	0.4		0.4		0.4
1,2,3,4,6,7,8-HpCDD	73			4.7		1.6		2.1
2,3,7,8-TCDF	7.9			0.6	<	0.1	<	0.2
1,2,3,7,8-PeCDF	2.2		<	0.3	<	0.3	<	0.2
2,3,4,7,8-PeCDF	2.7			0.3	<	0.3	<	0.2
1,2,3,4,7,8-HxCDF	6.5			0.4	_	0.3	<	0.2
1,2,3,6,7,8HxCDF	2.9	+		0.4	-	0.3	<	0.2
1,2,3,7,8,9HxCDF	<0.3		-	0.4		0.3	<	0.2
2,3,4,6,7,8HxCDF	2.3		_	0.4	_	0.3	<	0.2
1,2,3,4,6,7,8HpCDF	37		Ì	2.3		0.4	<	0.3
1,2,3,4,7,8,9HpCDF	2.3		<	0.4	-	0.4	<	0.3
TCDDs (total)	7.1			0.1		1.6		0.2
PeCDDs (total)	9.2			0.1	-	0.3	<	
HxCDDs (total)	9.2 41		_	2.5		1.0		1.7
HpCDDs (total)	150			11	-	4.2		7.5
O CDD	500			46	_	24		40
TCDFs (total)			_	-	_	0.2		
	61			2.6				0.2
PeCDFs (total)	33		<	0.3	-	0.3	<	0.2
HxCDFs (total)	42		_	1.8	_	0.3	<	0.2
HpCDFs (total)	63		_	3.6 4 *	<	0.4	<	0.3
OCDF	73		_	4 *	_	0.6	<	0.5
					-			
Data Summary(1)								
Teta thru O cta Hom obg Totals D ixin Hom obgs	707.3			60.2	_	30.8		49.4
Furan Hom obgs	272.0		_	12.0	-	0.8		0.2
Sum	979.3		-	72.2	-	31.6		49.6
2,3,7,8-TCDD Toxic Equivalence(2)	9.8			0.3	_	0.1		0.1
2,3,7,8-TCDD Toxic Equivalence(3)	10.0			0.2	_	0.1		0.1
DFW Site Specific Sedin entCriteria for					-			
2,3,7,8-TCDD(4)								
Hum an Bibaccum ulation (sc=10,000 pg/gOC)	64.7			34.0		25.4		63.7
Wildlife B baccum ulation(sc=200 pg/g0 C)	1.3		_	0.7	_	0.5		1.3
TotalOrganic Carbon (%)	0.647			0.34		0.254		0.637
		+			-	1	-	
(1) 0 nly results greater than laboratory								
(2) International Toxicity Equivalency				- - -	_			
(2) International loxicity Equivalency Factors	_	+			+			
(3) W HO Toxicity Equivalency Factors					-		-	
(4) NYSDEC Division of Fish and W ildlife								
			_		_		-	
* - Peak detected but did not meet quantification criteria								
Blue - Exceeds Wildlife and Hum an Bioaccum ulation Criteria				Red - E levated	-			
<mark>G zeen – exc</mark> eeds W ildlife B baccum ulation Criteria		+	_	Yellow - Averag	je p	ercentabund	lanc	e
			_		-		-	

	ations pg/g, dry weight					
		North F	ond		North Pond	
		0-30			30-82	
		Sedine	ent		sedim ent	
Analyte		Axys			Axys	
2 2 7 0 000		0.5			0.1	
2,3,7,8-TCD		0.5			0.1	
1,2,3,7,8-₽e		0.5	*		0.2	
1,2,3,4,7,8+		0.5	*		0.4	
1,2,3,6,7,8+		1.0			0.4	
1 ,2 ,3 ,7 ,8 ,9 +		0.9	*		0.4	
1 ,2 ,3 ,4 ,6 ,7 ,8		18			1.3	
2,3,7,8-TCD		1.9			0.1	
1,2,3,7,8-₽e		0.6	*		0.1	
2,3,4,7,8-₽e		0.7			0.1	
1,2,3,4,7,84		0.9			0.2	
1 ,2 ,3 ,6 ,7 ,8+	HxCDF	0.6			0.2	
1 ,2 ,3 ,7 ,8 ,9 +	HXCDF	<0.2		<	0.2	
2 ,3 ,4 ,6 ,7 ,8 +	HxCDF	0.5		<	0.2	
۶, 7, 6, 4, 3, 2, 2	8-HpCDF	5.4		<	0.4	
1 ,2 ,3 ,4 ,7 ,8 ,	9-HpCDF	0.4		<	0.4	
TCDDs (tota	1)	1.7			0.3	
PeCDDs (to	tal)	<0.1		<	0.2	
HxCDDs (to	tal)	8.2		<	0.4	
HpCDDs (to	tal)	34		<	1.3	
OCDD		120		<	2.1	
TCDFs (tota	1)	17			0.5	
PeCDFs (to		7.2		<	0.1	
HxCDFs (to		7.9			0.2	
HpCDFs (to		12			0.4	
OCDF		11			1	
0.021		11		-	-	
Data Sum m	ary(1)					
The transformer of	cta Hom obg Totals					
Tetra tritu 0	Dixin Hom obgs	163.9			0.3	
	Furan Hom obgs	55.1			0.5	
	Sum	219.0			0.8	
	D Toxic Equivalence(2)	2.1			0.0	
∠,3,7,8-TCD	D Toxic Equivalence(3)	2.1			0.0	
DFW Site S	pecific Sedin ent Criteria for					
2,3,7,8-TCD						
	baccum ulation (sc=10,000 pg/gOC)	65.6			134.0	
Widlife B	baccum ulation(sc=200 pg/gOC)	1.3			2.7	
Total O man	ic Carbon(%)	0.656			1.34	
		0.030				
(1) O nly 1	esults greater than laboratory					
	ing limits used in data sum mary.					
	tionalToxicity Equivalency					
(3) W HO	s Toxicity Equivalency Factors					
	EC Division of Fish and W idlife					
(1,1,1,0,0)						
_	ected but did not meet quantification criteria					
Blue -Exce	eds Wildlife and Hum an Bioaccum ulation Cr				Red -E levated pe	
	Green - exceeds Wildlife Bibaccum ulati	on Criteria			Yellow -Average	percentab

		_			
All concentrations pg/g, dry weight		_			
	Station	-	Ley Ck		Pettit Flum e
	Sam ple Type	-	sedim ent		sedim ent
C	ollection Date		10/25/95		9/8/95
Analyte					
2,3,7,8-TCDD		<	1.1		190
1,2,3,7,8-PeCDD		<	0.4		570
1,2,3,4,7,8-HxCDD			0.54		570
1,2,3,6,7,8HxCDD		_	1.5		1200
1,2,3,7,8,9HxCDD		<	1.5		610
1,2,3,4,6,7,8HpCDD			14		6800
2,3,7,8-TCDF			1.3		430
1,2,3,7,8-PeCDF			0.8		4100
2,3,4,7,8-PeCDF			0.43		8500
1,2,3,4,7,8HxCDF			2.2 0.5		56000 10000
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF			0.5		2100
2,3,4,6,7,8+HxCDF			1.6		3400
2,3,4,6,7,8HXCDF 1,2,3,4,6,7,8HpCDF		-	4.2		190000
1,2,3,4,6,7,8,9-нрСDF 1,2,3,4,7,8,9-нрСDF			4.2		8500
ICDDs (total)			11		11000
PeCDDs (total)		<	2.8		11000
HxCDDs (total)		-	14		17000
HpCDDs (total)			14		12000
OCDD		-	71		17000
ICDFs (total)		<	1.3		27000
PeCDFs (total)			1.4		50000
HxCDFs (total)		<	2.2		120000
HpCDFs (total)		<	4.2		210000
DCDF		<	7.7		430000
Data Summary(1)					
Fetra thru O cta Hom obg Totals					
	Homologs		110.0		0.000, 68
	Hom obgs		0.0		837,000.0
S	um		110.0		905,000.0
		_	0.0		14061.0
2,3,7,8-TCDD Toxic Equivalence(2)		_	0.2		14861.0 14743.7
2,3,7,8-TCDD Toxic Equivalence(3)			0.2		14/43./
OFW Site Specific Sedin entCriteria for		_			
2,3,7,8-TCDD(4)		_			
Hum an Bibaccum ulation(sc=10,000 pg/g0 C)	_	627.0		150.0
W iblife B baccum ulation (sc=200 pg/g0 C)	/		12.5		3.0
		-	12.5		5.0
FotalOrganic Carbon(%)			6.27		1.5
		-			
		-			
(1) 0 nly results greater than aboratory		-			
reporting lim its used in data sum mary.		-			
(2) International Toxicity Equivalency		-			
Factors					
(3) W HO Toxicity Equivalency Factors					
(4) NYSDEC Division of Fish and Wildlife					
* - Peak detected but did not meet quantification	on criteria				
Blue - Exceeds Wildlife and Hum an Bioaccum		+		Red - E leva	ted percent abundance
<mark>Green — exc</mark> eeds Wildlife Bioaccum ulation Crite	erra			Yellow -Ave	age percentabundan

Dioxin in Tributaries Study		-		+-		
All concentrations pg/g, dry weight		-		+-		
	Station		GillCk 1		GillCk 2	GillCk 3
	ple Type tion Date		sedim ent 10/26/95	_	sedim ent 10/26/95	sedim ent
Analyte	don Date		10/26/95		10/26/95	10/26/95
		-		-		
2,3,7,8-TCDD		<	0.35	<	0.3	23
1,2,3,7,8-PeCDD		<	0.26	<	0.31	13
1,2,3,4,7,8-HxCDD		<	0.53	<	0.44	20
1,2,3,6,7,8-HxCDD		<	0.43	<	0.44	140
1,2,3,7,8,9-HxCDD		<	0.58	<	0.4	92
1,2,3,4,6,7,8-HpCDD			9.4	<	2.6	890
2,3,7,8-TCDF		<	0.66	<	0.54	74
1,2,3,7,8-PeCDF		<	0.54	<	0.48	50
2,3,4,7,8-PeCDF		<	0.26	<	0.36	42
1,2,3,4,7,8-HxCDF		<	1.6	<	0.5	330
1,2,3,6,7,8-HxCDF		<	0.66	<	0.13	51
1,2,3,7,8,9HxCDF		<	0.16	<	0.13	< 6.9
2,3,4,6,7,8HxCDF		<	0.25	<	0.79	30
1,2,3,4,6,7,8HpCDF		<	0.83	<	0.66	320
1,2,3,4,7,8,9HpCDF		<	2.9	<	0.15	110
ICDDs (total)		<	0.24	<	0.64	54
PeCDDs (total)		<	0.48	<	0.31	98
HxCDDs (total)			0.55		0.71	610
HpCDDs (total)		<	1.4	<	2.9	1400
CCDD			18		130	10000
ICDFs (total)			100	<	0.54	710
PeCDFs (total)		<	0.95	<	0.52	560
HxCDFs (total)		<	2.2	<	0.79	780
HpCDFs (total)			9.3	<	0.66	680
CDF			17	<	1.7	1600
Data Summary (1)						
Tetra thru O cta Hom obg Totals Dixin Hom obgs			18.0	_	130.0	10 160 0
5						12,162.0 4,330.0
Furan Hom obgs			<mark>126.3</mark> 144.3	_	0.0	
S um			144.5		130.0	16,492.0
2,3,7,8-TCDD Toxic Equivalence(2)		-	0.1		0.1	151.5
2,3,7,8-TCDD Toxic Equivalence(3)		-	0.1	+	0.1	147.6
		-		+		
DFW Site Specific Sediment Criteria for				-		
2,3,7,8-TCDD(4)				-		
Hum an Bibaccum ulation (sc=10,000 pg/gOC)			227.0		177.0	584.0
Wildlife B baccum ulation (sc=200 pg/gOC)			4.5	1	3.5	11.7
TotalOrganic Carbon(%)			2.27		1.77	5.84
(1) 0 nly results greater than aboratory						
		-		-		
reporting lim its used in data sum mary.		-		-		
(2) International Toxicity Equivalency		-		-		
Factors		_		-		
		-		-		
(3) W HO Toxicity Equivalency Factors						
(3) W HO Toxicity Equivalency Factors (4) NYSDEC Division of Fish and Wildlife		-				
(4) NYSDEC Division of Fish and Wildlife	nteria					
(4)NYSDEC Division of Fish and Wildlife *-Peak detected but did not meet quantification of		'n			Red - E byste	ed percent.abundan
(4) NYSDEC Division of Fish and W iblife	ion Criter	'n				ed percentabundan age percentabunda

Dioxin in Tributaries Study									
All concentrations pg/g, dry weight									
A liconcentrations pg/g, dry weight		18m iCk	_			_			
Station	1	w illiam		Bottle	Bk		Cayuqa Ck	1	Cayuga Ck 2
Sam ple Type		sedim ent	-	sedim			sedim ent	-	sedim ent
Collection Date		10/27/95		11/9/9	5		10/26/95		10/26/95
Analyte	1								
2,3,7,8-TCDD		2.4		0.51	*		3.4		120
1,2,3,7,8-PeCDD	<	4.7	<	0.99	*	<	2.5		17
1,2,3,4,7,8HxCDD		16		1.3		<	1.8		38
1,2,3,6,7,8HxCDD		140		1.2		<	4.5		110
L,2,3,7,8,9-HxCDD		31		1.4	*	<	4.8		110
1,2,3,4,6,7,8-HpCDD		3300		4.4			59		660
2,3,7,8-TCDF		7.3		0.49		<	3		23
L,2,3,7,8-PeCDF	<	10	_	0.96		<	3.3		23
2,3,4,7,8-PeCDF		14		0.82		<	5.3		35
1,2,3,4,7,8HxCDF		120		0.78			12		270
L,2,3,6,7,8HxCDF		43		0.7			3		42
L,2,3,7,8,9HxCDF		11		0.51		<	0.41	<	7.3
2,3,4,6,7,8HxCDF	<	35	<	8.0		<	3.7		33
L,2,3,4,6,7,8HpCDF		2400	<	1.5			25		480
L,2,3,4,7,8,9-HpCDF		77	<	0.95		<	2.8		39
ICDDs (total)		37	<	8.0			7.4		220
PeCDDs (total)	<	28	<	6.4		<	3.8		150
HxCDDs (total)		790	<	1.4			22		810
HpCDDs (total)	1	7100	<	4.4			110		1100
)CDD	1	42000	-	29			650		3700
ICDFs (total)	-	150	<	0.69		_	91		470
PeCDFs (total)	+	180	<	1.1			27		430
IxCDFs (total)	+	660		1.2			36		630
HpCDFs (total)	-	7000		1.5			49		700
)CDF	-	5100		2.7			65		980
Data Sum m ary (1)									
Tetra thru O cta Hom obg Totals						_			
Dioxin Hom obgs		49,927.0		0.0	++		789.4		5,980.0
Furan Hom obgs	-	13,090.0	-	0.0			268.0		3,210.0
Sum	+	63,017.0		0.0		_	1,057.4		9,190.0
	1								
2,3,7,8-TCDD Toxic Equivalence(2)		151.1		0.0			6.5		226.2
2,3,7,8-TCDD Toxic Equivalence(3)		108.7		0.0			5.8		230.5
OFW Site Specific Sediment Criteria for									
2,3,7,8-TCDD(4)									
Hum an Bioaccum ulation(sc=10,000 pg/gOC)		596.0		126.0			441.0		618.0
Wildlife Bioaccum ulation (sc=200 pg/gOC)		11.9		2.5			8.8		12.4
TotalOrganic Carbon(%)		5.96		1.26			4.41		6.18
	+					_			
(1) Only results greater than aboratory									
reporting lim its used in data sum m ary.									
(2) International Toxicity Equivalency									
Factors									
(3) W HO Toxicity Equivalency Factors									
(4) NYSDEC Division of Fish and Wildlife			-						
* - Peak detected but did not meet quantification crite	ria								
Blue - Exceeds Wildlife and Hum an Bioaccum ulation	Cı	iteria			Red	-Ele	evated percent	ak	oundance
<mark>Green -</mark> exceeds Wildlife Bibaccum ulation Criteria	a						Average perce		
		53							
	-	55	_			_		-	

Dioxin/Furan Data - Sediment Lake Ontario Tributaries	+ +		++						+	
	+				_					
All concentrations pg/g, dry weight					_					
A iteolicentiations pg/g, div weight					_					
Station	n 0	ak O	rrhar	ส	Ste	rling		Black	T.ake	
Sam ple Type		ed in		~		in ei	nt.	sedin		
Laborator		xys			Аху			Axys	ene	
Analyte	1				,	-		70		
2,3,7,8-TCDD	0	.4			0.1			0.3		
	_				_					
1,2,3,7,8-PeCDD	0	.5	*		0.2			1.5		
1,2,3,4,7,8HxCDD	0	.9		<	0.3	3		2		
1,2,3,6,7,8HxCDD	2	.5			0.3	3	r l	3.4		
1,2,3,7,8,9HxCDD	2	2.5			0.4		r I	5.6		
1,2,3,4,6,7,8HpCDD		0			5.1			55		
								3.3		
2,3,7,8-TCDF		.9			0.2					
1,2,3,7,8-PeCDF	0	.8		<	0.3	3		2.4		
2,3,4,7,8-PeCDF	1	.1		<	0.3	3		3.7		
1,2,3,4,7,8HxCDF	3	3.0		<	: 0.3	3		4.3		
1,2,3,6,7,8-HxCDF	_	.5			0.3			3.3		
1,2,3,7,8,9HxCDF	< 0		+		0.3		_	0.5		
					_					
2,3,4,6,7,8+HxCDF		.1		<	: 0.3		_	3.1		
1,2,3,4,6,7,8-HpCDF	2	3			1.5	5		21		
1,2,3,4,7,8,9-HpCDF	1	.3		<	0.3	3		1.5		
TCDDs (total)	4	.5			0.3	3		4.3		
PeCDDs (total)		3.1			: 0.2			8.4		
HxCDDs (total)	_				_			31		
		21			1.5					
HpCDDs (total)	9	9			9.6	5		120		
OCDD	5	640			38			430		
TCDFs (total)	2	24			2.2	2		58		
PeCDFs (total)	1	.5			1.8	3		38		
HxCDFs (total)		23			1.9			37		
					_			-		
HpCDFs (total)		9			3.3			33		
OCDF	3	37			3.5	5		31		
Data Sum m ary(1)					_					
					_					
Tetra thru 0 cta Hom o bg Totals	6	67.6			49.4			593.7		
D bxn Hom obgs Fuan Hom obgs		48.0			12.7			197.0		
Sum		15.6	-		62.1			790.7		
3 dili	0	13.0			1.20	•		790.7		
2,3,7,8-TCDD Toxic Equivalence(2)	3	.9			0.2			5.2		
2,3,7,8-TCDD Toxic Equivalence(3)		.6	\vdash		0.2		_	4.8		
, , , , ,	- 1		++		· · 2		_			
DFW Site Specific Sediment Criteria for	++									
2,3,7,8-TCDD(4)										
Hum an Bibaccum ulation (sc=10,000 pg/gOC)	5	7.4			84.7			140.0		
Wildlife Bibaccum ulation(sc=200 pg/gOC)	1	.1			1.7			2.8		
TotalOrganic Carbon (%)	0	.574			0.84	7		1.4		
(1) Only results greater than laboratory										
reporting lim its used in data sum m ary.					_					
(2) International Toxicity Equivalency	++		+							
Factors					_					
(3) W HO Toxicity Equivalency Factors (4) NYSDEC Division of Fish and W itilife	+				_		_			
					_				+	
* - Peak detected but did not meet quantification criteria	+				_					
Blue - Exceeds W idlife and Hum an Bibaccum ulation Criteria	++				Red	- E b	hated	percentab	undance	<u>م</u>
Green - exceeds W lidlife B baccum ulation Criteria	+		+ +					e percentab		
	+		+		Ten		- vende	- PCACEILO		
	++		++						+	
	+	_					_			
		54	·		_					

All concentrations pg/g, dry weight Station Sam ple Type				
Sam pie Type	EllicottCk Sediment	Wilson Har Sediment	0 kottHar Sedim ent	Johnson Sedim en
Laboratory	Axys	Axys	Axys	Axys
Analyte		_	_	_
2,3,7,8-TCDD	2.7 *	2.4	2.9	< 0.2
1,2,3,7,8⊕eCDD	4.1	3.2	2.9	< 0.2 0.3 *
1,2,3,4,7,8HxCDD	5.8	5.6	4.4	0.3 ^
1,2,3,6,7,8HxCDD	13	15	4.4 29	1.3
1,2,3,7,8,9HxCDD	14	15	12	1.2
1,2,3,4,6,7,8HpCDD	210	310	720	24
2,3,7,8-TCDF	4.1	3.4	13	0.8
1,2,3,7,8-PeCDF	3.2	2.4	4.5	0.4
2,3,4,7,8-PeCDF	6.2	2.6	6.5	0.6
1,2,3,4,7,8HxCDF	11	8.1	34	1.1
1,2,3,6,7,8HxCDF	7.2	6.5	18	0.6
1,2,3,7,8,9HxCDF	2.6	0.8	-	< 0.2
2,3,4,6,7,8HxCDF	8.1	3.1	1.2	0.5
1,2,3,4,6,7,8HpCDF	85	79	440	9.3
1,2,3,4,7,8,9-HpCDF	9.9	5	20	0.6
TCDDs (total)	17	6.9	44	2.2
PeCDDs (total)	28	17	68	1.7
HxCDDs (total)	100	100	280	9.9
HpCDDs (total)	400	550	1700	45
OCDD	1800	2700	8600	280
TCDFs (total)	89	44	240	11
PeCDFs (total)	110	38	91	5.6
HxCDFs (total)	160	110	370	11
HpCDFs (total)	200	210	1100	22
OCDF	180	170	670	23
Data Summary(1)				
Tetra thru O cta H om obg Totals				
D bxin Hom obgs Furan Hom obgs	2,345.0 739.0	3,373.9 572.0	10,692.0 2,471.0	338.8 72.6
Sum	3,084.0	3,945.9	13,163.0	411.4
2,3,7,8-TCDD Toxic Equivalence (2)	19.6 19.9	15.6 14.7	40 32.8	1.7
2,3,7,8-TCDD Toxic Equivalence(3)	19.9	14./	32.8	1.6
DFW Site Specific Sediment Criteria for				
2,3,7,8-TCDD(4)	0.0	50.4	1.40.0	00.0
Hum an B baccum ulation (sc=10,000 pg/gOC) W ildlife B baccum ulation (sc=200 pg/gOC)	83.1 1.7	78.4 1.6	140.0 2.8	82.0 1.6
		1.0	2.0	1.0
TotalOrganic Carbon(%)	0.831	0.784	1.4	0.82
(1) 0 nly results greater than laboratory				
reporting lim its used in data sum mary.				
(2) International Toxicity Equivalency Factors				
(3) W HO Toxicity Equivalency Factors				
(4) NYSDEC Division of Fish and W idlife				
* - Peak detected but did not meet quantification criteria				
Blue - Exceeds W idlife and Hum an B baccum ulation Criter	ia		ed percentabi	
<mark>G reen – exc</mark> eeds W idlife Bibaccum ulation Criteria		Yelbw -Ave	rage percenta	bundance

All concontrations as to derive that					
All concentrations pg/g, dry weight					
Station	4	11	12	18	19
Sam ple Depth(cm) Laboratory	Surficial Axys	Surficial Axys	Surficial Axys	Surficial Axys	Surficia Axys
Analyte					, 0
2,3,7,8-TCDD	16	0.6	2.1	9.1	45
1,2,3,7,8-PeCDD	6.2	0.3	1.0	2.0	12
1,2,3,4,7,8HxCDD	6.3	0.3	0.4	1.6	9.0
1,2,3,6,7,8HxCDD	16	0.7	1.4	5.2	30
1,2,3,7,8,9HxCDD	17	0.8	21	5.4	31
1,2,3,4,6,7,8HpCDD 2,3,7,8-TCDF	200 34	8.1	2.3	75	340 51
1,2,3,7,8-PeCDF	7.1	1.6	2.3	2.0	11
2,3,4,7,8 _± eCDF	17	1	1.4	7.9	36
1,2,3,4,7,8+HxCDF	60	2.5	5.6	30	170
1,2,3,6,7,8HxCDF	13	0.7	1.2	5.3	30
1,2,3,7,8,9+xCDF	0.2	0.1	0.1	0.1	30
2,3,4,6,7,8HxCDF	10	0.1	0.6	2.8	16
1,2,3,4,6,7,8HpCDF	240	9.7	20	2.8	650
1,2,3,4,7,8,9HpCDF	11	9.7	1.1	5.4	31
TCDDs (total)	63	2.8	5.6	25	120
PeCDDs (total)	70	2.8	6.6	21	120
HxCDDs (total)	180	7.3	15	52	290
HpCDDs (total)	450	17	44	160	700
O C D D	1500	57	180	830	2900
TCDFs (total)	300	16	23	89	500
PeCDFs (total)	170	8.3	13	60	340
HxCDFs (total)	200	8.5	16	74	420
HpCDFs (total)	340	13	29	140	830
OCDF	390	15	39	220	1300
Data Summary(1)					
Tetra thru Octa Hom obg Totals					
Dixin Hom obgs Furan Hom obgs	<mark>2,263.0</mark> 1,400.0	86.9 60.8	251.2 120.0	1,088.0 583.0	4,130.0 3,390.0
Sum	3,663.0	147.7	371.2	1,671.0	7,520.0
2,3,7,8-TCDD Toxic Equivalence(2) 2,3,7,8-TCDD Toxic Equivalence(3)	50 51.4	2.2 2.3	5.3 5.6	22.9 22.9	117.7 119.9
DFW Site Specific Sediment Criteria for 2,3,7,8-TCDD(4)					
Hum an Bibaccum ulation (sc=10,000 pg/gOC)	565.0	37.0	103.0	156.0	462.0
Wildlife Bioaccum ulation(sc=200 pg/gOC)	11.3	0.7	2.1	3.1	9.2
TotalOrganic Carbon(%)	5.65	0.37	1.03	1.56	4.62
(1) 0 nly results greater than aboratory					
reporting lim its used in data sum m ary.					
(2) International Toxicity Equivalency					
Factors					
(3) W HO Toxicity Equivalency Factors (4) NYSDEC Division of Fish and W itilitie					
* - Peak detected but did not meet quantification	criteria				
Blue - Exce <mark>eds Wildlife and Hum an Bioaccum ula</mark>	ation Criteria			ted percent abur	
Green - exceeds Wildlife Bibaccum ulation Criteria	a		Yelbw -Ave	erage percentab	undance

ll concentrations pg/g, dry weight					
	Station 21	23	26	39A	45
Sam ple Dep	oth (cm) Surficial oratory Axys	Surficial Axys	Surficial Axys	Surficial Axys	Surficial Axys
inalyte	Stably Axys	Алур	ллур	лхур	лаур
2,3,7,8-TCDD	41	34	3.1	60	50
,2,3,7,8-PeCDD	4.3	9.8	0.9	12	9.3
,2,3,4,7,8HxCDD	2.9	9.3	1.0	11	11
,2,3,6,7,8HxCDD	11	26	3.1	35	29
,2,3,7,8,9HxCDD	8.9	28	2.6	34	34
,2,3,4,6,7,8HpCDD	130	330	52	390	350
2,3,7,8-TCDF	19	53	3.4	58	51
.,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	3.9	10	1.0	15 46	
	14			-	43
,2,3,4,7,8HxCDF ,2,3,6,7,8HxCDF	110	140	9.4 2.1	240 49	210
.,2,3,7,8,9HxCDF	18	24		-	
2,2,3,7,8,9HXCDF	<0.2	<0.3	<0.6	2.1	2.0
	7.1	16	1.3	22	19.0
.,2,3,4,6,7,8-HpCDF .,2,3,4,7,8,9-HpCDF	490	540 24	43 2	930 4.2	810 45
CDDs (total)	61	110	13	4.2	45 130
PeCDDs (total)	39	100	13	140	130
IxCDDs (total)	100	280	33	280	250
(pCDDs (total)	260	700	110	850	750
	1000	2900	580	3300	3100
CDFs (total)	210	510	40	650	660
eCDFs (total)	160	320	27	470	420
IxCDFs (total)	260	370	32	610	540
IpCDFs (total)	600	700	69	1200	1000
)CDF	980	1100	67	1200	1700
	980	1100	07	1900	1700
ata Sum mary(1)					
Yetra thru O cta Hom olog Totals				1 200 0	
Dioxin Hom ologs Furan Hom ologs	<mark>1,460.0</mark> 2,210.0	4,090.0 3,000.0	746.0 235.0	4,700.0 4,830.0	4,330.0 4,320.0
Sum	3,670.0	7,090.0	981.0	9,530.0	8,650.0
2,3,7,8-TCDD Toxic Equivalence(2) 2,3,7,8-TCDD Toxic Equivalence(3)	76.4 76.8	100 101.3	8.9 8.7	153.3 154.6	133.3 133.6
	70.0	101.5	0.7	134.0	133.0
FW Site Specific Sediment Criteria for	<u> </u>				
2,3,7,8-TCDD (4) Hum an Bibaccum ulation(sc=10,000 p	pg /g0 C) 149 0	436.0	210.0	507.0	512.0
W iblife B baccum ulation (sc=200 pg/		8.7	4.2	10.1	10.2
"otal0 rganic Carbon (%)	1.49	4.36	2.1	5.07	5.12
(1) Only results greater than laborator reporting lim its used in data sum n					
(2) International Toxicity Equivalency	aty.				
Factors					
(3) W HO Toxicity Equivalency Factor (4) NYSDEC Division of Fish and W it					
-Peak detected butdid notmeet quar			Dod Dire		
Blue - Exceeds Wildlife and Hum an Bio Freen - exceeds Wildlife Bioaccum ulati				ed percentabund age percentabu	
		57			

Allconcentrat	tions pg/g, dry weight					
The concentration						
	Station	51	53	54	57	58
	Sam ple Depth (cm) Laboratory	Surficial Axys	Surficial Axys	Surficial Axys	Surficial Axys	Surficia Axys
Analyte		2				
2,3,7,8-TCDD		1 4	0.0	2.0	21	5 6
2,3,7,8-1CDD 1,2,3,7,8-₽eC		1.4	2.9	3.8	31	5.6 1.3
1,2,3,7,8+ec		0.3	0.5	0.9	7.0	1.3
1,2,3,4,7,8H2		1.1	1.6	2.4	18	4.3
1,2,3,0,7,8,9Hz		0.8	1.0	2.4	18	4.4
1,2,3,4,6,7,8+		14	21	31	230	60
2,3,7,8-TCDF	npebb	1.1	1.4	2.3	19	4.2
1,2,3,7,8-PeC	DE	0.4	0.7	1.0	8.5	1.9
2,3,4,7,8-PeC		0.8	1.3	2.5	21	4.3
1,2,3,4,7,8H		5.0	9.5	14	120	22
1,2,3,6,7,8H		0.9	1.8	2.6	24	4.6
1,2,3,0,7,8,9H2		<0.1	<0.1	<0.1	0.6	<0.4
2,3,4,6,7,8H2		0.5	<0.1 0.7	1.2	9.7	2.2
1,2,3,4,6,7,8		18	33	48	440	87
1,2,3,4,7,8,94	-	0.8	1.9	2.2	20	4
TCDDs (total)	-		5.8			
PeCDDs (total)		3.8		8.9	95	16
		2.5	5.5	9.7	110	16
HxCDDs (tota		11	16	24	220	46
HpCDDs (tota		29	45	66	480	130
O C D D		150	250	370	2300	780
TCDFs (total)		14	20	27	250	57
PeCDFs (tota		7.7	14	22	190	43
HxCDFs (tota		15	26	36	320	63
HpCDFs (tota		25	44	63	550	110
OCDF		42	72	97	950	150
Data Sum mai	ry (1)					
Tetra thru 0 ct	ta Homobg Totals					
D ioxin H		196.3	322.3	478.60	3,205.0	988.0
Furan H	om obgs	103.7	176.0	245.00	2,260.0	<mark>423.0</mark>
Sur	n	300.0	498.3	723.60	5,465.0	1,411.0
2.3.7.8-TCDD	Toxic Equivalence(2)	3.5	6.4	9.42	77.4	15.3
	Toxic Equivalence (3)	3.4	6.5	9.45	78.1	15.1
DEW Site Sp	ecific Sediment Criteria for					
2,3,7,8-TCDD						
Hum an Bic	accum ulation(sc=10,000 pg/gOC)	97.0	74.0	115.00	315.0	174.0
Wildlife Bio	baccum ulation (sc=200 pg/gOC)	1.9	1.5	2.30	6.3	3.5
Total0 rganic	Carbon (%)	0.97	0.74	1.15	3.15	1.74
(1) 0 n lv reg	sults greater than aboratory					
	g lim its used in data sum m ary.					
	onalToxicity Equivalency					
Factors						
	oxicity Equivalency Factors C Division of Fish and Wildlife					
	cted but did not meet quantification criteri				_	_
	ds Wildlife and Hum an Bioaccum ulation C	riteria			ed percent abund	
Green - excee	eds Wildlife Bibaccum ulation Criteria			Y ELDW -A VE	rage percentabu	indance
		58				
						1

All concentration	s pg/g, dry weight					
	S F3/3' OT WCRIT					
	Station	62	63	65	69	71
	Sam ple Depth (cm)	Surficial	Surficial	Surficial	Surficial	Surficial
Analyte	Laboratory	Axys	Axys	Axys	Axys	Axys
2,3,7,8-TCDD		2.8	4.2	35	12	18
1,2,3,7,8-PeCDD		1.8	2.4	5.4	3.9	3.5
1,2,3,4,7,8-HxCD		1.5	3.0	6.2	4.5	3.9
1,2,3,6,7,8HxCD	D	6.7	7.0	18	13	11
1,2,3,7,8,9HxCD		6.9	11	21	15	12
1,2,3,4,6,7,8HpC	DD	120	120	210	170	140
2,3,7,8-TCDF		8.1	6.2	20	15	14
1,2,3,7,8-PeCDF		1.6	2.8	13	5.2	5.6
2,3,4,7,8-PeCDF		3.7	6	22	14	14
1,2,3,4,7,8-HxCD	F	10	30	180	78	90
1,2,3,6,7,8HxCD	F	2.9	6.9	33	16	17
1,2,3,7,8,9+HxCD	F	<0.5	0.3	<1.1	1.1	<0.7
2,3,4,6,7,8HxCD	F	2.5	3.2	11	7.2	7.2
1,2,3,4,6,7,8HpC	DF	77	120	480	290	330
1,2,3,4,7,8,9Hp	DF	2.8	5.1	27	13	14
TCDDs (total)		10	25	75	43	53
PeCDDs (total)		23	29	66	47	37
HxCDDs (total)		64	79	160	120	110
HpCDDs (total)		250	270	430	370	290
OCDD		1300	2200	2000	1900	1200
TCDFs (total)		74	80	270	190	180
PeCDFs (total)		47	62	200	130	130
HxCDFs (total)		61	87	370	200	250
HpCDFs (total)		140	150	600	360	400
OCDF		110	190	920	540	670
Data Sum mary (1)					
Tetra thru Octa H	om obg Totals					
Dioxin Hom		1,647.0	2,603.0	2,731.0	<mark>2,480.0</mark>	<mark>1 ,690 .0</mark>
Furan Hom	obgs	<mark>432.0</mark>	<mark>569.0</mark>	2,360.0	1,420.0	0. 630, 1
Sum		2 ,079 .0	3,172.0	5,091.0	3 ,900 .0	3 ,320 .0
2.3.7.8-TCDD To	xic Equivalence (2)	12.9	20.1	88.4	43.4	49.3
	xic Equivalence (3)	12.5	19.2	88.4	43.1	49.3
DFW Site Speci	ic Sedin ent Criteria for					
2,3,7,8-TCDD(4)						
	cum ulation (sc=10,000 pg/g0		344.0	358.0	338.0	358.0
Wildlife Bioac	cum ulation(sc=200 pg/gOC)	2.7	6.9	7.2	6.8	7.2
Total0 rganic Ca	rbon(%)	1.35	3.44	3.58	3.38	3.58
(1) Only mar - 1	anotorthan bharring					
	s greater than laboratory m its used in data summary.					
	lToxicity Equivalency					
Factors						
	ity Equivalency Factors ivision of Fish and Wildlife					
	l butdid notm eetquantificat 1 iidilife and Hum an Bioaccum		2	Red Ebret	d nement abund	lance
	Viblife Bioaccum ulation Cr		a		ed percentabuno age percentabu	
C LECH CACCERS				I CIDW AVE	mac percentabl	and drive a
			59			

All concentrations pg/g, dry weight					
Station		74		75	
Sam ple Depth (cm Laboratory		Surficia Axys	1	Surficial Axys	
Analyte	ANYO	АХУЗ		плур	
2,3,7,8-TCDD	150	0.8		0.5	
1,2,3,7,8-PeCDD	15	0.4		0.3	
1,2,3,4,7,8HxCDD	15	1	*	0.3 *	
1,2,3,6,7,8HxCDD	47	1.5		0.9	
1,2,3,7,8,9HxCDD	33	1.7		1.0	
1,2,3,4,6,7,8HpCDD	440	19		12	
2,3,7,8-TCDF	51	1.7		1.6	
1,2,3,7,8-PeCDF	20	0.5		0.4	
2,3,4,7,8-PeCDF	51	1.3		0.9	
1,2,3,4,7,8HxCDF 1,2,3,6,7,8HxCDF	440	3.9		1.9	
1,2,3,7,8,9HXCDF	74	1.0		0.5	
1,2,3,7,8,9HxCDF 2,3,4,6,7,8HxCDF	2.3	<0.1		<0.1	
		0.8		0.5	
1,2,3,4,6,7,8HpCDF	1600	18		7.7	
1,2,3,4,7,8,9-HpCDF TCDDs (total)	82	0.9		0.5	
PeCDDs (total)	200	3.1		3.3	
HxCDDs (total)	430	3.5		3.3	
HpCDDs (total)	870	39		25	
0 C D D					
TCDFs (total)	2700 590	160 17		110	
PecDFs (total)	590	9.9		6.6	
HxCDFs (total)	1100	9.9		8.2	
HXCDFS (total)	2000	26		11	
O C D F	4400	26		14	
	00 FF	2.9			
Data Sum mary(1)					
Tetra thru O cta Hom obg Totals	1 270 0	219.6		149.6	
Dixin Hom obgs Furan Hom obgs	4,370.0 8,610.0	219.6 97.9		149.6 55.8	
Sum	12,980.0	317.5		205.4	
		_			
2,3,7,8-TCDD Toxic Equivalence(2)	281.5	3.4		2.1	
2,3,7,8-TCDD Toxic Equivalence(3)	282.6	3.4		2.2	
DFW Site Specific Sediment Criteria for					
2,3,7,8-TCDD(4)	_	_			
Hum an Bibaccum ulation (sc=10,000 pg/gOC)	435.0 8.7	197.0 3.9		155.0 3.1	
W idlife B baccum ulation(sc=200 pg/gOC)	0./	2.2		2 -	
TotalOrganic Carbon(%)	4.35	1.97		1.55	
(1) Only results greater than aboratory reporting limits used in data summary.					
(2) International Toxicity Equivalency					
Factors					
(3) W HO Toxicity Equivalency Factors					
(4) NYSDEC Division of Fish and Wildlife					
* - Peak detected but did not meet quantification crite	ria				
Blue - Exceeds Wildlife and Hum an Bioaccum ulation			Red -	E levated percent a	bundance
<mark>Green – exc</mark> eeds Wildlife Bioaccum ulation Criteria			Yelbu	w -Average percent	tabundance
	60				
	00				

Dioxin in Tributaries Study					
All concentrations pg/g, dry weight					
2	s ta tio n	BuffShip Can	Lake Erie (06)	Sandy Ck	Salm on
Sam pl	le Type	Sedim ent	Sedim ent	Sedim ent	Sedim ent
Labo	o ra to ry	Axys	Axys	Axys	Axys
A n a lyte					
2,3,7,8-TC D D		2.4	0.2	< 0.1	< 0.1
1,2,3,7,8-P eC D D 1,2,3,4,7,8-H xC D D		3.0	0.8	0.2 *	< 0.1
1,2,3,6,7,8-H xC D D		11	2.4	0.5	0.3
1,2,3,7,8,9-H xC D D		1 2	2.4	0.7	0.3
1,2,3,4,6,7,8-HpCDD		180	58	13	3.5
2,3,7,8-TC D F		1 3	1.9	0.3	0.1
1,2,3,7,8-PeCDF		4.9	0.9	0.2	< 0.1
2,3,4,7,8-PeCDF		8.5	1.6	0.2	0.1
1 ,2 ,3 ,4 ,7 ,8 H xC D F		11	5.5	0.7	0.2
1,2,3,6,7,8-H xC D F		6.5	1.4	0.3	0.1
1,2,3,7,8,9-H xC D F		< 0.8	< 0.2	< 0.1	< 0.1
2 ,3 ,4 ,6 ,7 ,8 H xC D F 1 ,2 ,3 ,4 ,6 ,7 ,8 H pC D F		5.2 51	0.7	0.2	0.1
1,2,3,4,6,7,8,9-HpCDF		3.5	0.6	0.2	0.1
TCDDs (total)		21	11	0.3	0.1
PeCDDs (total)		30	11	1.2	< 0.1
HxCDDs (total)		130	2 8	4.9	2.0
HpCDDs (total)		400	120	2 7	6.9
OCDD		1800	690	280	4 0
TCDFs (total)		210	3 0	3.0	2.0
PeCDFs (total)		120	2 2	2.6	2.8
HxCDFs (total)		100	19	4.8	2.8
HpCDFs (total) OCDF		100	1 9 2 0	9.3	3.2
		110	2.0	0.5	2.2
Data Summary (1)					
Tetra thru Octa Hom olog Totals					
Dioxin Hom ologs		2,381.0	860.00	313.4	49.0
Furan Hom ologs		640.0	110.00	26.0	13.0
S um		3,021.0	970.00	339.4	62.0
2,3,7,8-TCDD Toxic Equivalence(2)		18.9	4.39	1.0	0.3
2,3,7,8-TCDD Toxic Equivalence(3)		18.7	4.15	0.8	0.2
DFW Site Specific Sediment Criteria for					
2,3,7,8-TCDD(4)					
Hum an Bibaccum ulation (sc=10,000 pg/g0 C)	81.7	34.80	180.0	37.2
W ild life B ioaccum ulation (sc=200 pg/gOC)		1.6	0.70	3.6	0.7
TotalOrganic Carbon(%)		0.817	0.35	1.8	0.372
		5.017	0.55	1.0	0.572
(1) Only results greater than laboratory					
reporting lim its used in data sum mary.					
(2) International Toxicity Equivalency					
Factors					
(3) W HO Toxicity Equivalency Factors					
(4) NYSDEC Division of Fish and Wildlife					
* - Peak detected but did not meet quantification					
Blue - Exceeds Wildliffe and Hum an Bioaccum Green - exceeds Wildliffe Bioaccum ulation		rilena		Elevated percent w -Average perce	
Green - exceeds w mile B baccum diation	Cillera			" – A verage perce	abundalice
			61		

Dioxin in Tribu					
Allconcentratio	ons pg/g,dry weight				
					Erie Basin
	s ta tio n	Dunkirk Har	Cattaraugus	Lake Erie (03)	Marina
	Sam ple Type	Sediment Axys	Sedim ent Axys	Sedim ent Axys	Sedim ent Axys
Analyte	Laboratory	Axys	Axys	Axys	Axys
Anaya					
2,3,7,8-TCDD		0.4	< 0.1	0.2	1.5
1,2,3,7,8-PeCD	D	0.6	0.2 *	0.6	10
1,2,3,4,7,8HxC	DD	0.7	0.2	0.7	17
1,2,3,6,7,8HxC		4.2	0.6	1.5	4 9
1,2,3,7,8,9HxC		2.9	0.6	2.1	4 9
1,2,3,4,6,7,8-н	pCDD	68	17	28	1130
2,3,7,8-TCDF		1.6	0.1	1.3	13
1,2,3,7,8-PeCD 2,3,4,7,8-PeCD		0.5	0.1	0.5	6.3 12
1,2,3,4,7,8 Pec D		1.6	0.3	0.7	23
1,2,3,4,7,8HxC		0.8	0.2	0.5	2 3
1,2,3,7,8,9HxC		< 0.2	0.1	0.1	< 2.8
2 ,3 ,4 ,6 ,7 ,8 H x C		0.7	0.2	0.5	17
1 ,2 ,3 ,4 ,6 ,7 ,8 -н	pCDF	6.5	1.9	4.1	220
1 ,2 ,3 ,4 ,7 ,8 ,9 -н	pCDF	0.5 *	0.4	0.3	12
TCDDs (total)		4.3	1.7	2.9	4 5
PeCDDs (total)		5.0	< 0.1	5.1	120
HxCDDs (total)		37	6.2	19	590
HpCDDs (total) OCDD		140	33	64	2400
TCDFs (total)		7 8 0 2 4	170	4 1 0	11000
PeCDFs (total)		12	1.3	8.3	210 250
HxCDFs (total)		17	2.6	7.5	470
HpCDFs (total)		15	4.9	7.4	540
OCDF		12	6.9	5.5	490
Data Sum mary	(1)				
-	Hom olog Totals				
Dioxin Ho Furan Ho		966.3 80.0	210.9	501.0 42.7	14,155.0 1,960.0
Sum		1,046.3	228.5	543.7	16,115.0
		1,01013	12013		10,110.0
2,3,7,8-TCDD 1	Coxic Equivalence(2)	4.0	0.0	2.6	56.8
2,3,7,8-TCDD 1	Coxic Equivalence(3)	3.6	0.7	2.5	51.5
	cific Sedim ent Criteria for				
2,3,7,8-TCDD(4					
-	ccum ulation (sc=10,000 pg/gOC)	89.5	23.7	0.0	65.9
w шаште Віоа	.ccum ulation(sc=200 pg/g0C)	1.8	0.5	0.0	1.3
TotalOrganic C	arbon (%)	0.895	0.237	n /a	0.659
-ouro iganic C		0.000	.2.51		
(1) Only resu	Its greater than laboratory				
_	lim its used in data sum mary.				
(2) Internation	nalToxicity Equivalency				
Factors					
	icity Equivalency Factors				
(4) NYSDEC	Division of Fish and Wildlife				
	ed but did not meet quantification criteri				
	Wildlife and Hum an Bioaccum ulation C	ntena		percentabundance	
Green - ex	ceeds Wildlife Bioaccum ulation Criteria		renow - Averag	e percentabundanc	E
			62		

Dioxin in Tributaries Study					
All concentrations pg/l					
		Black	Lake		0 swegatchie
Analyte		Water			Water
Allağı		Axys			Axys
2,3,7,8-TCDD	<	0.3			0.3
1,2,3,7,8-PeCDD		0.4		<	0.3
1,2,3,4,7,8HxCDD		0.5			1.0
1,2,3,6,7,8HxCDD		0.5			1.0
1,2,3,7,8,9HxCDD		0.8			1.0
1,2,3,4,6,7,8+HpCDD					
		2.2			3.1
2,3,7,8-TCDF		0.5	*		0.5
1,2,3,7,8-PeCDF		0.3	*		0.4
2,3,4,7,8-PeCDF		0.4	<u> </u>		0.4
1,2,3,4,7,8HxCDF		0.4	*		0.2
1,2,3,6,7,8HxCDF		0.5			0.2
1,2,3,7,8,9-HxCDF		0.4			0.2
2,3,4,6,7,8HxCDF		0.6	*		0.2
1,2,3,4,6,7,8HpCDF		1.5			1.0
1,2,3,4,7,8,9-HpCDF	<	0.3		<	1.0
TCDDs (total)		0.5		<	0.3
PeCDDs (total)	<	0.4		<	0.3
HxCDDs (total)		1.7		<	1.0
HpCDDs (total)		4.1			3.1
OCDD		9.2			20
TCDFs (total)		0.6		<	0.5
PeCDFs (total)		0.4		<	0.4
HxCDFs (total)		2.1		<	0.2
HpCDFs (total)		1.5			1.0
OCDF		1.5			1.4
Data Summary(1)					
Tetra thru O cta Hom obg Totals					
Dioxin Hom obgs		15.5			23.1
Furan Hom obgs		6.1			0.0
Sum		21.6			23.1
2.2.7.9 TCDD Toxiz E guin brac(2)		0.58			0.35
2,3,7,8-TCDD Toxic Equivalence(2) 2,3,7,8-TCDD Toxic Equivalence(3)		0.58			0.33
					-
Toxic Equivalency * B baccum ulation Equivalency		0.452			0.3017
DOW Site Specific WaterQuality Standards for					
2,3,7,8-TCDD (4)					
Hum an Consum ption of Fish (0.0006 pg/l)		0.0006			0.0006
Wildlife Protection (0.0031 pg/l)		0.0031			0.0031
(1) Only results greater than aboratory reporting limits used in data summary.					
(2) hternational Toxicity Equivalency					
Factors					
(3) W HO Toxicity Equivalency Factors					
(4) NYSDEC Division of Fish and Wildlife					
		water	1.2 JHz ~	taria fari	um an consum ption c
P up.	e -exceeds	waærq	иашу сп	ena iori	ium am consum pron c

Dioxin in Tributaries	suuuy				
Allconcentrations pg.	/]				
	/1				
		s ta tio n	Sandy Ck	Salm on	C a tta ra u g
		Sam ple Type	Water	Water	Water
		Labora to ry	Axys	Axys	Axys
A n a ly te					
2,3,7,8-TCDD			< 0.4	< 1.4	<1.4
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD			< 0.3	< 1.4	< 1.4
1,2,3,4,7,8HXCDD			<1.0	<1.4	<1.4
1,2,3,7,8,9 H x C D D			<1.0	<1.4	<1.4
1,2,3,4,6,7,8-HpCDD			4.4	4 *	2.2 *
2,3,7,8-TCDF			< 0.4	<1.4	<1.4
1,2,3,7,8-PeCDF			< 0.6	< 1.4	<1.4
2,3,4,7,8-PeCDF			< 0.6	< 1.4	<1.4
1,2,3,4,7,8-HxCDF			< 0.7	< 1.4	<1.4
1,2,3,6,7,8HxCDF			< 0.7	< 1.4	<1.4
1,2,3,7,8,9HxCDF			< 0.7	< 1.4	<1.4
2,3,4,6,7,8HxCDF			< 0.7	< 1.4	<1.4
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF			2.7	1.8 *	<1.4
1,2,3,4,7,8,9+HpCDF TCDDs (total)			< 0.6	<1.4	<1.4
PeCDDs (total)			< 0.3	<1.4	<1.4
HxCDDs (total)			<1.0	<1.4	<1.4
HpCDDs (total)			8.0	3.4	1.5
OCDD			2 9	31	8.7
TCDFs (total)			< 0.4	<1.4	1.4
PeCDFs (total)			< 0.6	<1.4	<1.4
HxCDFs (total)			< 0.7	< 1.4	< 1.4
HpCDFs (total)			3.8	1.8	<1.4
OCDF			4.4	2.9	1.5
Data Summary (1)					
Tetra thru Octa Homo	log Totals				
	Dioxin H	om ologs	37.0	34.4	10.2
	Furan Ho		8.2	4.7	2.9
	S um		45.2	39.1	13.1
2,3,7,8-TCDD Toxic E			0.1	0.09	0.03
2,3,7,8-TCDD Toxic E	quivalence(3)		0.07	0.06	0.02
Tavia Envirolari	Disasaurrul (0.0028	0.0025	0.0012
Toxic Equivalency *	Bioaccumulatio	on Equivalency	0.0028	0.0025	0.0012
DOW Site Specific W	aterQuality Stan	dards for			
2,3,7,8-TCDD(4)					
Hum an Consum pti	on ofFish (0.0006	pg /1)	0.0006	0.0006	0.0006
Wildlife Protection	(0.0031 pg/l)		0.0031	0.0031	0.0031
(1) Only results great					
	used in data sum				
(2) International Tox Factors	шлувquīvalency				
(3) W HO Toxicity E	guivalency Factor	PR			
(4) NYSDEC Divisio					
(.,	Dir and W D				
	erquality criteria f	brhum an consum ption of fish			
Pumpe - exceede wat	- daama cincing i				
Pumple - exceeds wat					
Puple - exceeds wat					
Puple - exceeds wat			64		

											_
All concentrations pg/l								\square			+
Station	0 kott			Johnso	n		0 ak 0 i		1	Sterling	
Sam ple Type Laboratory	W ater Axys			W ater Axys			W ater Axys			W ater Axys	_
Analyte	7			1-			1-				_
	0.4			0.3			0.5			0.7	
	0.4			0.6			0.7			0.8	_
1,2,3,4,7,8HxCDD	0.4			0.7			0.7			0.5	_
1,2,3,6,7,8HxCDD	0.7			0.7			0.7			0.5	
1,2,3,7,8,9HxCDD	0.6	*	<	0.7		<	0.7		<	0.5	
1,2,3,4,6,7,8-HpCDD	6.1			2.2			2	*		1.5	*
2,3,7,8-TCDF	1.2			0.5			1.4			0.6	
1,2,3,7,8-PeCDF	0.4			0.4		<	0.4			0.3	
	0.3			0.4			1.6	*	<	0.3	
1,2,3,4,7,8HxCDF	1	*		0.7			0.7			0.5	
	0.4			0.7			0.7			0.5	_
	0.4			0.7			0.7			0.5	
	0.4			0.7			0.7		<	0.5	_
1,2,3,4,6,7,8HpCDF	3.6			0.9			1.2			1.1	
	0.5			0.9			1.2			0.6	
	0.4			0.3			0.5			0.7	
	0.4			0.6			0.7			0.8	
HxCDDs (total)	2.4		<	0.7			0.7			0.5	
HpCDDs (total)	13			2.2		<	0.2		<	0.4	
OCDD	50			7.3	*		11			5.0	
TCDFs (total)	4.7			0.5			1.7		<	0.6	
PeCDFs (total)	0.4			0.4			0.4			0.4	
HxCDFs (total)	1.3			0.7			0.7		<	0.5	
HpCDFs (total)	3.6			0.9			1.2			1.1	
OCDF	5.4		<	1.4		<	0.9			1.3	
Data Sum m ary(1)											
Tetra thru O cta Hom obg Totals Dioxin Hom obgs	65.4			9.5			11.0			5.0	
Furan Hom obgs	15.4			0.0			1.7			2.8	_
Sum	80.8			9.5			12.7			7.8	_
2,3,7,8-TCDD Toxic Equivalence(2)	0.00			0.02			0.07			0.00	
2,3,7,8-TCDD Toxic Equivalence(2) 2,3,7,8-TCDD Toxic Equivalence(3)	0.80			0.03			0.97 1.06			80.0 80.0	
	0.50			0.02			1.00			0.00	
Toxic Equivalency * B baccum ulation Equivalency	0.161			0.0011			1.393			0.005	
DOW Site Specific WaterQuality Standards for											_
2,3,7,8-TCDD(4)	0.0									0.067.7	
Hum an Consum ption of Fish (0.0006 pg/l) Wildliffe Protection (0.0031 pg/l)	0.0006			0.0006			0.0006 0.0031			0.0006	
(1) Only results greater than laboratory reporting lim its used in data sum mary.											
(2) International Toxicity Equivalency											_
Factors											
(3) W HO Toxicity Equivalency Factors											
(4)NYSDEC Division of Fish and W idlife											
Pupe -exceeds waterquality criteria forhum an o	consum p	tion of	fish								

All concentrations pg/g			
Statio	n 18-MILE (CK. Raquette R	Genesee F
Stato Sam ple Typ		Tissue	Tissue
Laborator		Triangle	Triangle
Analyte	y inangle	i Lang E	Thangle
2,3,7,8-TCDD	< 0.3	< 0.6	< 0.3
1,2,3,7,8-PeCDD	< 0.6	<1.2	< 0.5
1,2,3,4,7,8HxCDD	<1	<2.1	< 0.7
1,2,3,6,7,8HxCDD	< 0.9	<2	< 0.7
1,2,3,7,8,9HxCDD	< 0.9	<1.9	< 0.7
1,2,3,4,6,7,8-HpCDD	<1.4	< 3	<1.1
2,3,7,8-TCDF	1	0.98	0.47
1,2,3,7,8-PeCDF	< 0.4	< 0.8	< 0.4
2,3,4,7,8-PeCDF	< 0.4	< 0.8	< 0.4
1,2,3,4,7,8+HxCDF	< 0.6	< 1.2	< 0.5
1,2,3,6,7,8HxCDF	< 0.6	<1.1	< 0.4
1,2,3,7,8,9HXCDF	< 0.0	<1.4	< 0.5
2,3,4,6,7,8HxCDF	< 0.7	<1.5	< 0.6
1,2,3,4,6,7,8-HpCDF	<1	<2.1	< 0.5
1,2,3,4,7,8,9HpCDF	<1.4	< 2.8	<1
TCDDs (total)	< 0.3	< 0.6	< 0.3
PeCDDs (total)	< 0.5	< 1.2	< 0.5
HxCDDs (total)	< 0.9	< 2	< 0.5
HpCDDs (total)	< 1.4	< 3	<1.1
OCDD	<3	< 5.3	<1.9
TCDFs (total)	1.3	0.98	0.47
PeCDFs (total)	< 0.42	< 0.8	< 0.4
HxCDFs (total)	< 0.6	<1.3	< 0.5
HpCDFs (total)	< 1.2	< 2.4	< 0.8
O C D F	<2.3	< 4.1	< 1.5
			12.00
Data Summary(1)			
Teta thru O cta Hom olog Totals			
Dixin Hom obqs	0.0	0.0	0.0
Furan Hom obgs	1.3	1.0	0.5
Sum	1.3	1.0	0.5
	L.J	0.1	0.5
2,3,7,8-TCDD Toxic Equivalence(2)	0.1	0.1	0.0
2,3,7,8-TCDD Toxic Equivalence(2)	0.1	0.0	0.0
	V +1		0.0
NYSDEC/DFW Site Specific Sediment Criteria f	or		
2,3,7,8-TCDD(3) as TEQ (forwildlife	0.0		0.0
eating fish)	2.3	2.3	2.3
DOH fish advisory criteria	10.0	10.0	10.0
FDA Action levels	25	25	25
Percent lipid (%)	1.9	0.9	0.4
(1) 0 nly results greater than aboratory			
reporting lim its used in data sum m ary.			
(2) International Toxicity Equivalency			
Factors			
(3) W HO New TEQ using values for fish			
		66	

Dioxin in Tributaries Study			
All concentrations pg/g			
	Grasse R	Grasse R	
Static		m outh	Dunkirk
Sam ple Typ		Tissue	Tissue
	ry Triangle	Triangle	Triangle
Analyte			
2,3,7,8-TCDD	< 0.2	< 0.3	< 0.3
1,2,3,7,8-PeCDD	< 0.4	< 0.5	< 0.4
1,2,3,4,7,8HxCDD	< 0.5	< 0.8	< 0.6
1,2,3,6,7,8HxCDD	< 0.5	< 0.8	< 0.6
1,2,3,7,8,9HxCDD	< 0.5	< 0.7	< 0.6
1,2,3,4,6,7,8-нрСDD	< 0.7	<1.1	< 0.8
2,3,7,8-TCDF	0.63	6.1	0.8
1,2,3,7,8-PeCDF	< 0.3	< 0.4	< 0.3
2,3,4,7,8-PeCDF	< 0.3	1.1	< 0.3
1,2,3,4,7,8-HxCDF	< 0.3	< 0.5	< 0.4
1,2,3,6,7,8-HxCDF	< 0.3	< 0.5	< 0.4
1,2,3,7,8,9HxCDF	< 0.4	< 0.6	< 0.5
2,3,4,6,7,8-HxCDF	< 0.4	< 0.6	< 0.5
1,2,3,4,6,7,8-HpCDF	< 0.5	< 0.8	< 0.6
1,2,3,4,7,8,9+HpCDF	< 0.6	<1	< 0.8
TCDDs (total)	< 0.2	< 0.3	< 0.3
PeCDDs (total)	< 0.4	< 0.5	< 0.4
HxCDDs (total)	< 0.5	< 0.8	< 0.6
HpCDDs (total)	< 0.7	< 1.1	< 0.8
OCDD	<1.1	< 2.2	< 1.6
TCDFs (total)	0.63	7.5	8.0
PeCDFs (total)	< 0.3	1.1	< 0.3
HxCDFs (total)	< 0.4	< 0.5	< 0.4
HpCDFs (total)	< 0.5	< 0.9	< 0.7
OCDF	< 0.8	<1.7	< 1.3
Data Summary(1)			
Tetra thru O cta Hom obg Totals			
Dioxin Hom obgs	0.0	0.0	0.0
Furan Hom obgs	0.6	6.8	8.0
Sum	0.6	8.6	8.0
2,3,7,8-TCDD Toxic Equivalence(2)	0.1	1.2	0.1
2,3,7,8-TCDD Toxic Equivalence(3)	0.0	0.9	0.0
NYSDEC/DFW Site Specific Sediment Criteria:	for		
2,3,7,8-TCDD(3) as TEQ (forwildlife			
eating fish)	2.3	2.3	2.3
DOH fish advisory criteria	10.0	10.0	10.0
FDA Action levels	25	25	25
Percent lipid (%)	1	2.4	5.9
(1) Only results greater than aboratory			
reporting lim its used in data sum m ary.			
(2) International Toxicity Equivalency Factors			
(3) W HO New TEQ using values for fish			
	6	7	

Dioxin in Tributaries Study				
All concentrations pg/g				
		D., 65 1- D		0
Sam	Station ple Type		Black R Tissue	OswegoR Tissue
		Triangle	Triangle	Triangle
Analyte				
-				
2,3,7,8-TCDD		< 0.06	< 0.2	< 0.07
1,2,3,7,8-PeCDD		< 0.07	< 0.3	< 0.09
1,2,3,4,7,8HxCDD		< 0.1	< 0.7	< 0.2
1,2,3,6,7,8HxCDD		< 0.1	< 0.6	< 0.1
1,2,3,7,8,9HxCDD		< 0.1	< 0.6	< 0.2
1,2,3,4,6,7,8HpCDD		< 0.2	< 0.9	< 0.2
2,3,7,8-TCDF		< 0.6	1.9	0.36
1,2,3,7,8-PeCDF		< 0.06	< 0.3	< 0.07
2,3,4,7,8-PeCDF		< 0.06	< 0.3	< 0.08
1,2,3,4,7,8HxCDF		0.24	< 0.5	< 0.1
1,2,3,6,7,8HxCDF		< 0.08	< 0.4	< 0.1
1,2,3,7,8,9HxCDF		< 0.1	< 0.5	< 0.1
2,3,4,6,7,8HxCDF		< 0.1	< 0.6	< 0.2
1,2,3,4,6,7,8HpCDF		0.33	< 0.7	< 0.2
1,2,3,4,7,8,9HpCDF		< 0.2	<1	< 0.3
TCDDs (total) PeCDDs (total)		0.13	0.31	< 0.07
HxCDDs (total)		< 0.07	< 0.3	< 0.09
HyCDDs (total)		< 0.28	< 0.0	< 0.2
O C D D		2.4	< 2.1	< 0.2
TCDFs (total)	_	0.18	1.9	0.36
PeCDFs (total)		0.10	< 0.3	< 0.07
HxCDFs (total)		0.24	< 0.5	< 0.1
HpCDFs (total)		0.33	< 0.8	< 0.2
OCDF		< 0.3	< 1.9	< 0.5
Data Sum mary(1)				
Tetra thru O cta Hom obg Totals				
Dioxin Hom ologs		2.5	0.3	0.0
Furan Hom obgs		1.4	1.9	0.4
Sum		3.9	2.2	0.4
2,3,7,8-TCDD Toxic Equivalence(2)		0.0	0.2	0.0
2,3,7,8-TCDD Toxic Equivalence(3)		0.0	0.1	0.0
	Quinnia E			
NYSDEC DFW Site Specific Sediment	cniena ior			
2,3,7,8-TCDD(3) as TEQ (forwildlife eating fish)		2.3	2.3	2.3
DOH fish advisory criteria		10.0	10.0	10.0
FDA Action evels		25	25	25
		2.3	2.5	2.5
Percent lipit (%)		0	3	1.6
(1) O ply population and the second s				
(1) Only results greater than aborator				
reporting limits used in data summ	nary.			
(2) International Toxicity Equivalency				
Factors (3) W HO New TEQ using values for fis	zh			
USING NEW INC USING VALUES DITLE	211			

All concentrations pg/g						-		
Stat Sam ple Ty		0 swegatch. Tissue		Perch R Tissue	Salm on R Tissue		Wine Creek Tissue	Sodus Ck Tissue
Laborat	-	Triangle		Triangle	Triangle	-	Triangle	Triangle
Analyte								
						-		
2,3,7,8-TCDD	<	0.2	<	0.5	< 0.6	<	0.4	< 0.2
1,2,3,7,8-PeCDD	<	0.4	<	1	<1.3	<	.0	< 0.5
1,2,3,4,7,8HxCDD	<	0.6	<	0.5	< 0.6	<	0.4	< 0.3
1,2,3,6,7,8HxCDD	<	0.5	<	0.4	< 0.6	<	0.4	< 0.2
1,2,3,7,8,9HxCDD	<	0.5	<	0.4	a. 0 >	<	0.4	< 0.2
1,2,3,4,6,7,8-HpCDD		8.0		0.63	< 0.7		0.5	0.82
2,3,7,8-TCDF		1.1		2.1	1		2.3	0.38
1,2,3,7,8-PeCDF			<	0.6	< 0.9	<	0.5	< 0.3
2,3,4,7,8-PeCDF				0.0	< 0.9	-	0.5	< 0.3
1,2,3,4,7,8HxCDF			<	0.3	< 0.5	-	0.3	< 0.2
1,2,3,6,7,8HxCDF				0.3	< 0.4	<	0.2	<01
1,2,3,7,8,9HxCDF			<	0.3	< 0.5		0.31	0.44
2,3,4,6,7,8HxCDF			<	0.4	< 0.6	_	:0.3	< 0.2
1,2,3,4,6,7,8-нрСDF				0.3	< 0.5	-	0.3	< 0.2
1,2,3,4,7,8,9HpCDF				0.5	8. 0 >	_	0.4	< 0.3
ICDDs (total)				0.5	< 0.6	-	0.4	< 0.2
PeCDDs (total)				1	<1.3	_	\$.0	< 0.5
HxCDDs (total)				0.5	< 0.6	<	0.4	< 0.2
HpCDDs (total)		0.8		0.44	< 0.7	_	0.8	1.4
		3.1		3.5	1.4	_	2.2	4.9
ICDFs (total)		1.5		3.5	1.7		0.89	0.38
PeCDFs (total) HxCDFs (total)		0.3 0.4		0.35	< 0.9	<	0.5	< 0.3
HpCDFs (total)				0.3			0.31	0.44
OCDF				0.4 0.9	< 0.6		0.3 0.8	<0.2 <0.7
		1.0	` 	0.9	<15		0.0	<0./
Data Sum m ary (1)								
Fetra thru 0 cta Hom obg Totals								
Dioxin Hom obgs		0.0		5.9	1.4		3.0	6.3
Furan Hom obgs		1.5		5.5	1.7		1.2	8.0
Sum		1.5		11.4	3.1		4.2	7.1
2,3,7,8-TCDD Toxic Equivalence(2)		0.1		1.8	0.1		0.3	0.1
2,3,7,8-TCDD Toxic Equivalence(3)		0.1		2.3	0.1		0.2	0.1
NYSDEC/DFW Site Specific Sediment Criteria	£							
2,3,7,8-TCDD(3) as TEQ (forwildlife	DF.					_		
eating fish)		2.3		2.3	2.3		2.3	2.3
20 H fish advisory criteria		2.3 10.0		2.3 10.0	10.0	-	2.3 10.0	10.0
FDA Action levels		25		25	25	-	25	25
		<u>_</u> _			2.5	-	2.5	2.2
Percent lipit (%)		n/a		1.8	1.9		2.2	1.6
						_		
(1) Only results greater than aboratory						_		
reporting limits used in data sum mary.						_		
(2) International Toxicity Equivalency						-		
Factors (3) W HO New TEQ using values for fish								
		69						

	Dioxin in Tr	ibutaries \$	Study				
		,					
	Allconcentra	ations pg/g			01-		
			a	Term dia mua ibu	0 ak	Eighteenm il	
			Station Sam ple Type	Tissue	COrchard Ck Tissue	Tissue	еск
						Triangle	
	2 a 1		Laboratory	Triangle	Triangle	Triangle	
	Analyte						
	2,3,7,8-TC DI	<u>`</u>			1.8	.0.5	
	2,3,7,8-1CD1 1,2,3,7,8-₽e			< 0.3	1.7	< 0.6	
				< 0.5	3.5 1.7	< 0.6	
	1,2,3,4,7,8+ 1,2,3,6,7,8+			< 0.4	1.8	0.99	
	1,2,3,0,7,8,9 1 1,2,3,7,8,9 1			< 0.4	1.5	< 0.6	
	1,2,3,7,6,7,8 1,7,6,7,8			1	3.1	12.9	
	2,3,7,8-TCDI	-		< 0.3	2.6	2.7	
	2,3,7,81CD1 1,2,3,7,8-₽e			< 0.3	1.9	< 0.7	
	1,2,3,7,8-₽e 2,3,4,7,8-₽e			< 0.3	1.9	<0.7	
	1,2,3,4,7,8+ 1,2,3,4,7,8+			< 0.3	1.8	<0.7 1.5	
	1,2,3,4,7,8+ 1,2,3,6,7,8+			< 0.3	1.6	0.64	
	1,2,3,7,8,9 , 1,2,3,7,8,9 ,1			< 0.3	2.2	0.81	
	2,3,4,6,7,8 , 1 2,3,4,6,7,8 , 1			< 0.3	1.2	< 0.4	
	1,2,3,4,6,7,8			< 0.3	2.2	8	
	1,2,3,4,7,8,9,9	-		< 0.5	2.2	8	
	TCDDs (tota	-		< 0.3	1.7	< 0.6	
	PeCDDs (tot			< 0.5	3.5	<1.2	
	HxCDDs (tot			< 0.4	1.8	4	
	HpCDDs (tot			1.5	3.1	25.3	
	OCDD	×1/		3.9	9.2	133	
	TCDFs (tota)	1)		< 0.3	2.6	2.1	
	PeCDFs (tot			< 0.3	1.9	1.5	
	HxCDFs (tot			<0.3	5.2	8.3	
	HpCDFs (tot			< 0.2	4.4	19.1	
	OCDF	,		<1	7.9	18.5	
	DataSumma	ary (1)					
		1.1.7					
	Tetra thru 0 o	ta Hom ob	q Totals				
	bxin Hom ob			5.4	19.3	162.3	
F	uran Hom ob	- JS		0.0	22.0	49.5	
	Sum			5.4	41.3	211.8	
	2 ,3 ,7 ,8-TC DI) Toxic Eq	uivalence(2)	0.0	1.2	1.0	
	2,3,7,8-TCDI			0.0	0.8	0.6	
		_					
	NYSDEC/DE	'W Site Sp	ecific Sedin entCrite	eria for			
	2 ,3 ,7 ,8-TC DI						
	-	eating fish)	2.3	2.3	2.3	
	DOH fish ad	visory criter	ria -	10.0	10.0	10.0	
	FDA Action	eve ls		25	25	25	
	Percent lipid	(%)		2.5	0.84	1	
	(1) 0 nly re	sults great	erthan laboratory				
	report	ng lin its us	sed in data sum m ary	•			
	(2) Interna	ionalToxic	ity Equivalency				
	Factor	3					
	(3) W HO N	lew TEQ u	sing values for fish				
				70			
				10			

All concentrations pg/g		_							
	Statio un ple Typ		0 kottHar Tissue		Johnson Tissue	_	0 ak 0 rchai Tissue	d	Sterling Tissue
	Laborator				Axys		Axys		Axys
Analyte									
2,3,7,8-TCDD			0.2		0.1		0.3		0.4
1,2,3,7,8 PeCDD		_	0.2		0.1				0.4
1,2,3,4,7,8HxCDD		_	0.2		0.1			-	0.4
1,2,3,6,7,8HxCDD		-	0.2		0.1			-	0.4
1,2,3,7,8,9HxCDD		_	0.4		0.1	_		-	0.4
1,2,3,4,6,7,8HpCDD		_	8.6		0.5		0.8	`	0.6
2,3,7,8-TCDF		_	1.6		0.5			2	0.4
1,2,3,7,8-PeCDF		-	0.2 *	<	0.1				0.4
2,3,4,7,8-PeCDF		<	0.3		0.2				0.4
1,2,3,4,7,8HxCDF		+	0.9	<	0.1				0.4
1,2,3,6,7,8HxCDF		+	0.4		0.1			-	0.4
1,2,3,7,8,9HxCDF		<	0.2		0.1			-	0.4
2,3,4,6,7,8HxCDF		_	0.2		0.1	_		-	0.4
1,2,3,4,6,7,8-HpCDF			5.6		0.3			-	0.4
1,2,3,4,7,8,9-HpCDF			0.3 *	<	0.1	<	0.3	<	0.4
TCDDs (total)			5.5		0.8	<	0.3	<	0.4
PeCDDs (total)			3.5	<	0.1	<	0.3	<	0.4
HxCDDs (total)			8.1		0.1	<	0.3	<	0.4
HpCDDs (total)			19		1.0		14		0.6
OCDD			54		3.4		4.8		4.8
TCDFs (total)			39		5.7		0.3	<	0.4
PeCDFs (total)			4.3		0.2	<	0.3	<	0.4
HxCDFs (total)			6.6		0.2	<	0.3	<	0.4
HpCDFs (total)			11		0.6		0.4	<	0.4
OCDF			5.4		0.5		0.8		0.4
Data Sum m ary(1)									
Tetra thru O cta Hom obg Totals		_				_			
Dioxin Hom ologs			90.1		2.00		18.8		5.4
Furan Hom obgs			66.3		10.10		1.5		0.4
Sun	1		156.4		12.10	_	20.3		5.8
2,3,7,8-TCDD Toxic Equivalence(2)		-	0.6		0.16		0.0		0.0
2,3,7,8-TCDD Toxic Equivalence(3)			0.6		0.16		0.0		0.0
% lipid			0.75		0.60		n/a		0.45
(1) Only results greater than aboratory reporting lim its used in data summ ar									
(2) International Toxicity Equivalency Factors	· ·								
(3) W HO Toxicity Equivalency Factors									
						+			
				71					

Dioxin in Trib	utaries Study					
Allconcentrat	ons pg/g, dry weight					
	s ta tio n	Sandy Ck	Salmon	B lack Lake	0 swegatchie	
	Sam ple Type	T issu e	T issu e	T issu e	T issu e	
	Laboratory	Axys	Axys	Axys	Axys	
A n a ly te						
2,3,7,8-TCDD		< 0.4	< 0.3	< 0.2	< 0.2	
1,2,3,7,8-PeC		< 0.4	< 0.3	< 0.2	< 0.2	
1 ,2 ,3 ,4 ,7 ,8 H x 1 ,2 ,3 ,6 ,7 ,8 H x		< 0.4	< 0.3	< 0.2	< 0.2	
1 ,2 ,3 ,6 ,7 ,8 , 1 ,2 ,3 ,7 ,8 ,9 H x		0.4	< 0.3	<0.2	<0.2	
1 ,2 ,3 ,4 ,6 ,7 ,8 H		0.7	0.4 *	2.2	0.9	
2 ,3 ,7 ,8 -TC D F		< 0.4	0.9	0.2	2.9	
1,2,3,7,8-PeCI) F	< 0.4	< 0.3	< 0.2	< 0.2	
2,3,4,7,8-PeC		< 0.4	< 0.3	< 0.2	0.3	
1,2,3,4,7,8-H x		< 0.4	< 0.3	< 0.2	< 0.2	
1,2,3,6,7,8-H x		< 0.4	< 0.3	< 0.2	< 0.2	
1 ,2 ,3 ,7 ,8 ,9 -H x 2 ,3 ,4 ,6 ,7 ,8 -H x		< 0.4	< 0.3	< 0.2	< 0.2	
1 ,2 ,3 ,4 ,6 ,7 ,8 H x		<0.4	< 0.3	<0.2	<0.2	
1 ,2 ,3 ,4 ,7 ,8 ,9 H		<0.4	<0.3	<0.2	<0.2	
TCDDs (total)		0.4	< 0.3	< 0.2	3.2	
PeCDDs (tota		< 0.4	< 0.3	< 0.2	< 0.2	
HxCDDs (tota		0.4	< 0.3	0.5	1.9	
HpCDDs (tota)	L)	0.7	0.5	4.5	2.2	
O C D D		5.3	3.6	17	6.1	
TCDFs (total) PeCDFs (total	\ \	1.0	18	1.1	59	
HxCDFs (total		<0.4	1.3	1.0	1.8	
HpCDFs (total		< 0.4	< 0.3	1.8	< 0.2	
OCDF		1.0	0.4	1.3	0.3 *	
Data Sum mar	/(1)					
Tetra thru 0 at	a Hom olog Totals					
Dioxin Ho		6.8	4.1	22.0	13.4	
Furan Ho		2.0	22.9	5.2	65.9	
S um		8.8	27.0	27.2	79.3	
	Toxic Equivalence (2)	0.1	0.1	0.1	0.5	
2,3,7,8-TCDD	Toxic Equivalence(3)	0.1	0.1	0.1	0.5	
	% lip ið	0.42	1.6	0.76	2.4	
	्रम्पूर्य	27.0	0.1	0.70	T. 2	
(1) 0 - 3	Its smatanthan labors to					
	ults greater than laboratory g lim its used in data sum mary.					
-	nalToxicity Equivalency					
Factors						
(3)W HO To	xicity Equivalency Factors					
			70			
			72			
					+ + + + +	

APPENDIX B

	Sediment (ppb)	Tissue (ppb)	Water (ppt)
North Pond 0-30 cm	15.23		
North Pond 30-82 cm	0		
North Pond 30-82 cm	0		
Black Lake	10.22	4.07	ND
Oswegatchie River	464.64	288.7	1.03
Sandy Creek	2.35	6.94	1.94
Irondequoit Bay 0-10 cm	72.93		
Irondequoit Bay 10-40 cm	398.05		
Sodus Bay 1 0-10 cm	17.43		
Sodus Bay 2 0-10 cm	24.98		
Ellicott Creek	300.41		
Wilson Harbor	36.96		
Olcott Harbor	510.01	209.92	50.54
Johnson Creek	5.16	7.99	0.35
Oak Orchard Creek	12.43		0.45
Sterling Creek	1.51	0.11	0.05
Salmon Ck	2.37	29.99	1.3
Lake Erie (03)	7.28		
Lake Erie (06)	32.12		
Erie Basin Marina	815.13		
Buffalo Small Boat Harbor	148.59		
Cattaraugus Ck	3.94		0.34
Dunkirk Harbor	88.01		
Dunkirk Harbor	78.85		

Table B1 - Sum of Congener PCB Concentrations

*The sum of the PCB congeners was calculated using a zero for all non-detected congeners.

Grain Size Distributio	11					
	DX097-04001	-031022	DX097-04001-	032285	DX097-04001-	038514
		2nd embay)10-22		nd embay) 22-85		nd embay)85-140
U.S.Standard	D iam eter		D iam eter		D iam eter	
Sieve Size	mm	% Finer	m m	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0	75.00	100.0
1½ "	37.50	100.0	37.50	100.0	37.50	100.0
3/4"	19.00	100.0	19.00	100.0	19.00	100.0
3/8"	9.500	100.0	9.500	100.0	9.500	100.0
#4	4.750	100.0	4.750	100.0	4.750	100.0
#10	2.000	100.0	2.000	100.0	2.000	87.9
#20	0.850	99.9	0.850	99.8	0.850	75.6
#50	0.300	99.3	0.300	98.7	0.300	67.1
#100	0150	97.9	0.150	97.0	0.150	62.4
#200	0.075	82.9	0.075	83.6	0.075	57.8
Hydrom eter	0.0335	52.8	0.0372	52.4	0.0437	33.8
	0.0263	44.5	0.0284	43.7	0.0321	28.2
	0.0201	37.2	0.0222	30.7	0.0233	23.8
	0.0155	28.0	0.0161	26.4	0.0169	19.3
	0.0120	20.6	0.0123	19.9	0.0125	17.1
	8800.0	15.1	0.0090	14.5	0.0091	11.6
	0.0064	10.5	0.0065	9.1	0.0066	8.2
	0.0046	8.8	0.0047	6.9	0.0047	4.9
	0.0033	5.0	0.0033	4.8	0.0033	4.9
	0.0024	4.0	0.0024	4.8	0.0024	3.8
	0.0014	4.0	0.0014	3.7	0.0014	2.7
	0.0010	4.0	0.0010	3.7	0.0010	2.7
Description	lightgray		light brown gray	r	light brown gray	r
United Soil						
C lassification						
System (USCS)	L,CL,MH,ord	СН	ML,CL,MH,ord	'H	ML,CL,MH,orC	Н

Grain Size Distributio	n					
	CTD97-04001-	010010	CT 097-07131-2	2	DX097-04001-	011040
	IrondequoitB		Cattaraugus		IrondequoitB	
		s ofNY sta #3				es of NY sta #3
U.S.Standard	D iam eter		D iam eter		D iam eter	
Sieve Size	m m	% Finer	m m	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0	75.00	100.0
1½ "	37.50	100.0	37.50	100.0	37.50	100.0
3/4"	19.00	100.0	19.00	100.0	19.00	100.0
3,/8"	9.500	100.0	9.500	100.0	9.500	100.0
#4	4.750	100.0	4.750	100.0	4.750	100.0
#10	2.000	77.3	2.000	99.9	2.000	81.3
#20	0.850	581	0.850	99.7	0.850	61.3
#50	0.300	49.6	0.300	97.7	0.300	53.7
#100	0150	46.6	0.150	83.7	0.150	51.3
#200	0.075	43.9	0.075	67.9	0.075	49.8
Hydrom eter	0.0496	30.5	0.0387	58.5	0.0475	26.3
	0.0353	27.8	0.0287	51.9	0.0338	24.9
	0.0250	27.8	0.0213	44.0	0.0241	23.4
	0.0178	25.2	0.0153	41.4	0.0171	22.0
	0.0130	22.5	0.0119	30.8	0.0127	19.2
	0.0093	19.8	0.0089	19.0	0.0091	16.3
	0.0066	17.1	0.0065	12.4	0.0065	13.4
	0.0047	14.5	0.0047	8.4	0.0046	10.6
	0.0033	11.8	0.0033	71	0.0033	7.7
	0.0024	91	0.0024	5.8	0.0024	6.3
	0.0014	91	0.0014	5.8	0.0014	6.3
	0.0010	91	0.0010	5.8	0.0010	4.9
Description	light brown		light gray		light brown gray	7
United Soil						
C lassification						
System (USCS)	SM or SC		ML,CL,MH,orC	Н	SM or SC	

Grain Size Distributio	n					
	DX097-04001-	-014080	DX097-04001-	018011	CTD97-04001-	020010
	IrondequoitE	av 40-80	IrondequoitB	av 80-115	Sodus Bay (n	earinlet) 0-10
		es ofNY sta #3		s ofNY sta #3		
U.S.Standard	D iam eter		D iam eter		D iam eter	
Sieve Size	mm	% Finer	m m	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0	75.00	100.0
1½ "	37.50	100.0	37.50	100.0	37.50	100.0
3/4"	19.00	100.0	19.00	100.0	19.00	100.0
3,8"	9.500	100.0	9.500	100.0	9.500	100.0
#4	4.750	100.0	4.750	100.0	4.750	100.0
#10	2.000	87.4	2.000	87.0	2.000	99.4
#20	0.850	74.5	0.850	73.4	0.850	6.68
#50	0.300	68.4	0.300	67.5	0.300	77.8
#100	0150	66.4	0.150	65.7	0.150	69.3
#200	0.075	65.0	0.075	64.0	0.075	54.8
Hydrom eter	0.0457	35.0	0.0387	41.4	0.0406	37.1
	0.0327	32.1	0.0284	37.6	0.0311	27.7
	0.0233	30.7	0.0207	34.8	0.0231	21.1
	0.0169	24.9	0.0148	33.0	0.0169	16.4
	0.0125	22.1	0.0111	30.2	0.0127	11.7
	0.0090	19.2	0.0083	23.7	0.0093	7.0
	0.0065	13.5	0.0062	16.2	0.0066	5.1
	0.0047	9.2	0.0045	11.6	0.0047	4.1
	0.0033	7.7	0.0033	7.8	0.0034	3.2
	0.0024	6.3	0.0023	0. 0	0.0024	3.2
	0.0014	6.3	0.0014	4.1	0.0014	3.2
	0.0010	49	0.0010	3.2	0.0010	3.2
Description	light gray		light gray		light brown gray	т Г
United Soil						
C lassification						
System (USCS)	L,CL,MH,orC	СН	ML,CL,MH,orC	Н	ML,CL,MH,orC	Н

Grain Size Distributio	n					
	DX097-07131-	7	DX097-04001-	021020	DX097-07131-	8
	Sandy Creek		Sodus Bay (n	earinlet) 10–20	Salmon Creek	
				-		
U.S.Standard	D iam eter		D iam eter		D iam eter	
Sieve Size	m m	% Finer	mm	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0	75.00	100.0
1½ "	37.50	100.0	37.50	100.0	37.50	100.0
3/4"	19.00	100.0	19.00	100.0	19.00	100.0
3/8"	9.500	100.0	9.500	100.0	9.500	100.0
#4	4.750	99.3	4.750	100.0	4.750	99.7
#10	2.000	98.8	2.000	99.5	2.000	99.3
#20	0.850	95 <i>9</i>	0.850	90.9	0.850	93.1
#50	0.300	91.3	0.300	83.1	0.300	12.7
#100	0150	81.5	0.150	71.9	0.150	3.7
#200	0.075	61.0	0.075	49.4	0.075	2.4
Hydrom eter	0.0406	48.7	0.0430	37.2	0.0511	4.6
	0.0311	36.4	0.0325	26.9	0.0363	3.9
	0.0233	26.5	0.0238	21.1	0.0257	3.9
	0.0168	22.8	0.0172	16.5	0.0182	3.9
	0.0125	19.1	0.0128	13.1	0.0133	3.9
	0.0090	16.6	0.0093	8.5	0.0094	3.2
	0.0064	12.9	0.0066	7.3	0.0067	3.2
	0.0046	10.4	0.0047	6.2	0.0047	3.2
	0.0033	79	0.0034	3.9	0.0033	3.2
	0.0023	6.7	0.0024	3.9	0.0024	2.5
	0.0014	6.7	0.0014	3.9	0.0014	2.5
	0.0010	5.4	0.0010	2.8	0.0010	2.5
Description	pinkish gray		light brown gray	7	light brownish g	ray
United Soil						
C lassification						
System (USCS)	L,CL,MH,orC	2H	SM or SC		SP	

Grain Size Distribution	1					
	DX097-04001-	-022016	DX097-04001-	021617	CTD97-04001-	030010
		earinlet) 20–163		earinlet) 163–178		nd embay)0-10
U.S.Standard	D iam eter		D iam eter		D iam eter	
Sieve Size	m m	% Finer	mm	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0	75.00	100.0
1½ "	37.50	100.0	37.50	100.0	37.50	100.0
3/4"	19.00	100.0	19.00	100.0	19.00	100.0
3/8"	9.500	100.0	9.500	100.0	9.500	100.0
#4	4.750	100.0	4.750	100.0	4.750	100.0
#10	2.000	99.8	2.000	99.3	2.000	99.5
#20	0.850	98.2	0.850	91.2	0.850	87.8
#50	0.300	95.6	0.300	86.0	0.300	82.4
#100	0.150	91.2	0.150	80.3	0.150	77.2
#200	0.075	74.0	0.075	63.4	0.075	67.0
H ydrom eter	0.0335	53.7	0.0420	38.3	0.0420	44.5
	0.0260	46.2	0.0314	30.7	0.0316	34.4
	0.0199	38.7	0.0233	23.1	0.0235	25.6
	0.0151	31.3	0.0174	13.4	0.0172	181
	0.0117	23.8	0.0130	10.2	0.0129	131
	8800.0	14.4	0.0093	6.9	0.0093	9.3
	0.0064	11.6	0.0067	4.8	0.0066	6.8
	0.0046	8.8	0.0047	3.7	0.0047	6.8
	0.0033	6.9	0.0034	3.7	0.0033	5.5
	0.0023	5.1	0.0024	3.7	0.0024	4.3
	0.0014	4.1	0.0014	3.7	0.0014	3.0
	0.0010	41	0.0010	2.6	0.0010	3.0
Description	light brown		light brown gray	r	light brown gray	7
United Soil						
C lassification						
System (USCS)	L,CL,MH,ord	СН	ML,CL,MH,orCH		ML,CL,MH,orCH	

Grain Size Distribution						
	CTD 97-05001	-01	СТ097-07131-	1	СТ097-07131-	4
	ElicottCreek		Dunkik Harbor		Erie Basin M arina	
U.S.Standard	Diameter		Diameter		Diameter	
Sieve Size	mm	% Finer	mm	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0	75.00	100,0
1½ "	37.50	100.0	37.50	100.0	37.50	1000
3/4"	19.00	100.0	19.00	100.0	19.00	100,0
3/8"	9.500	100.0	9.500	100.0	9,500	1000
#4	4.750	98.5	4.750	100.0	4.750	1000
#10	2.000	88.5	2.000	99.2	2,000	87.6
#20	0.850	77.3	0.850	97.4	0.850	71.8
#50	0.300	66.5	0.300	92.5	0.300	61.2
#100	0.150	54 <i>B</i>	0.150	63.5	0150	571
#200	0.075	44.4	0.075	30.7	0.D75	53 <i>9</i>
H ydrom eter	0.0391	31.6	0.0466	26.3	0.0447	391
	0.0284	29.4	0.0336	22.6	0.0321	36.2
	0.0207	27.3	0.0242	189	0.0231	31,9
	0.0148	25.8	0.0173	165	0.0166	291
	0.0111	23.6	0.0130	11.6	0.0123	26.2
	0.0082	192	0.0093	79	0.0091	162
	0.0061	141	0.0066	6.6	0.0066	105
	0.0044	12.0	0.0047	5.4	0.0047	7.7
	0.0032	9.0	0.0033	5.4	0.0033	63
	0.0023	7.£	0.0024	42	0.0024	63
	0.0013	61	0.0014	4.2	0.0014	4.8
	0100.0	4.7	0.0010	42	0.0010	4.8
Description	gray ish brow 1	1	lightbrownish	n gray	lightgray	
United Soil						
C lassification						
System (USCS)	SM orSC		SM orSC		ML,CL,MH,ord	СН

Grain Size Distribution	•					
	СТ097-07131	5	LE097-07131-6	5	CTD97-05001-	02
		BufSm.BoatHarbor		Lake Erie (6)		or
						-
U . S. Standard	Diameter		Diameter		D iam eter	
Sieve Size	mm	% Finer	mm	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0	75.00	100.0
1½ "	37.50	100.0	37.50	100.0	37.50	100.0
3/4"	19.00	100.0	19.00	100.0	19.00	100.0
3/8"	9.500	100.0	9.500	100.0	9.500	100.0
#4	4.750	100.0	4.750	100.0	4.750	100.0
#10	2.000	85.6	2.000	99.9	2.000	99.5
#20	0.850	69 <i>.</i> 9	0.850	99.9	0.850	961
#50	0.300	60.6	0.300	3.99	0.300	0. 98
#100	0150	55.5	0.150	98.8	0.150	81.2
#200	0.075	50.5	0.075	861	0.075	63.9
H ydrom eter	0.0440	39.1	0.0395	561	0.0384	36.1
	0.0321	33.8	0.0307	41.6	0.0297	28.2
	0.0231	29.8	0.0233	28.3	0.0223	21.8
	0.0169	23.1	0.0168	24.4	0.0165	17.0
	0.0126	191	0.0126	191	0.0124	13.9
	0.0090	165	0,0090	16.4	0.0090	9.9
	0.0065	125	0.0065	11.1	0.0065	6.7
	0.0046	98	0.0047	8.5	0.0046	5.9
	0.0033	72	0.0033	71	0.0033	4.3
	0.0024	5 <i>8</i>	0.0024	5.8	0.0024	3.5
	0.0014	5 <i>8</i>	0.0014	5.8	0.0014	3.5
	0,0010	45	0100.0	5.8	0.0010	3.5
Description	lightbrownis	h gray	lightgray		brownish gray	
United Soil						
C lassification						
System (USCS)	J,CL,MH,orCH		ML,CL,MH,ord	ML,CL,MH, orCH		Н

Grain Size Distributior	1					
	DX097-05001	-03	DX097-05001-	04	DX097-05001-	-05
	0 kottHarbor			Johnson Creek		Creek
U.S.Standard	D iam eter		D iam eter		D iam eter	
Sieve Size	m m	% Finer	mm	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0	75.00	100.0
1½ "	37.50	100.0	37.50	100.0	37.50	100.0
3/4"	19.00	100.0	19.00	100.0	19.00	100.0
3/8"	9.500	100.0	9.500	100.0	9.500	100.0
#4	4.750	100.0	4.750	100.0	4.750	100.0
#10	2.000	98.9	2.000	98.5	2.000	98.1
#20	0.850	94.0	0.850	94.7	0.850	92.0
#50	0.300	85.7	0.300	6.88	0.300	85.1
#100	0.150	75.2	0.150	75.0	0.150	73.0
#200	0.075	62.6	0.075	51.7	0.075	51.6
Hydrom eter	0.0430	33.3	0.0430	34.6	0.0453	32.1
	0.0323	25.1	0.0318	28.2	0.0334	24.5
	0.0238	18.9	0.0235	21.8	0.0242	19.5
	0.0173	13.8	0.0170	17.5	0.0174	15.7
	0.0130	9.7	0.0127	14.3	0.0128	14.4
	0.0092	6.8	0.0091	12.2	0.0091	131
	0.0066	6.6	0.0065	9.0	0.0066	9.4
	0.0047	5.6	0.0047	6.8	0.0047	8.1
	0.0033	5.6	0.0033	5.8	0.0033	6.8
	0.0024	4.5	0.0024	4.7	0.0024	5.6
	0.0014	4.5	0.0014	4.7	0.0014	5.6
	0.0010	4.5	0.0010	4.7	0.0010	5.6
Description	brown ish gray		brownish gray		brown	
United Soil						
C lassification						
System (USCS)	L,CL,MH,orC	'H	ML,CL,MH,orC	ML,CL,MH,orCH		!н

Grain Size Distributi						
	DXO97-05001-	06	CTD97-09211-	-11	CTD97-09211-	030030
	Sterling Creek		B bck Lake		North Pond (0)–30)
U.S.Standard	D iam eter		Diam eter		D iam eter	
Sieve Size	mm	% Finer	mm	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0	75.00	100.0
1½ "	37.50	100.0	37.50	100.0	37.50	100.0
3/4"	19.00	100.0	19.00	100.0	19.00	100.0
3/8"	9.500	100.0	9.500	511	9.500	100.0
#4	4.750	100.0	4.750	29.2	4.750	100.0
#10	2.000	99.2	2.000	20.7	2.000	99.8
#20	0.850	97.8	0.850	13.1	0.850	98.3
#50	0.300	87.3	0.300	0.8	0.300	93.5
#100	0150	43.6	0.150	6.3	0.150	8.08
#200	0.075	16.1	0.075	4.8	0.075	53.6
Hydrom eter	0.0494	15.5	0.0517	10.8	0.0430	33.7
	0.0355	11.7	0.0365	10.8	0.0325	24.3
	0.0255	0.8	0.0258	10.8	0.0242	16.0
	0.0182	6.7	0.0183	10.8	0.0174	129
	0.0133	6.7	0.0134	8.3	0.0130	9.8
	0.0094	6.7	0.0095	8.3	0.0093	7.7
	0.0067	5.5	0.0067	8.3	0.0066	5.6
	0.0047	5.5	0.0047	8.3	0.0047	4.6
	0.0033	5.5	0.0034	5.9	0.0034	3.5
	0.0024	5.5	0.0024	3.4	0.0024	3.5
	0.0014	5.5	0.0014	3.4	0.0014	3.5
	0.0010	4.2	0.0010	3.4	0.0010	3.5
Description	grayish brown		gray		gray	
United Soil						
C lassification						
System (USCS)	SM or SC		GW		ML,CL,MH,orC	H

Grain Size Distribution				
	CTD97-09211-	-033082	CTD97-09211-	-12
	North Pond (30-82)	0 swegatchie	
U.S.Standard	D iam eter		D iam eter	
Sieve Size	mm	% Finer	mm	% Finer
3"	75.00	100.0	75.00	100.0
1½ "	37.50	100.0	37.50	100.0
3/4"	19.00	100.0	19.00	100.0
3 /8 "	9.500	100.0	9.500	100.0
#4	4.750	100.0	4.750	100.0
#10	2.000	99.8	2.000	95.4
#20	0.850	93.5	0.850	91.3
#50	0.300	85.1	0.300	72.7
#100	0.150	75.5	0.150	39.0
#200	0.075	44.2	0.075	20.8
H ydrom eter	0.0460	26.8	0.0478	16.7
	0.0336	21.0	0.0347	12.8
	0.0247	14.2	0.0250	10.0
	0.0177	11.9	0.0179	0.8
	0.0130	9.6	0.0131	7.1
	0.0093	7.3	0.0093	7.1
	0.0066	6.2	0.0066	61
	0.0047	5.0	0.0047	5.2
	0.0034	3.9	0.0033	4.2
	0.0024	2.7	0.0024	4.2
	0.0014	2.7	0.0014	4.2
	0.0010	2.7	0.0010	3.3
Description	gray		light gray ish bro	own
United Soil				
C lassification				
System (USCS)	SM or SC		SM or SC	